Строение и атмосфера Солнца. Солнечный ветер
Из чего состоит Солнце, почему мы не видим солнечную корону и что такое солнечный ветер
Солнце языком цифр
Солнце, несмотря на то, что числится по классификации звезд “желтым карликом” так велико, что нам даже сложно представить. Когда мы говорим, что масса Юпитера – это 318 масс Земли, это кажется невероятным. Но когда мы узнаем, что 99,8% массы всего вещества Солнечной системы приходится на Солнце – это просто выходит за рамки понимания.
За прошедшие годы мы немало узнали о том как устроена “наша” звезда. Хотя человечество не изобрело (и вряд ли когда-то изобретет) исследовательский зонд, способный физически приблизиться к Солнцу и взять пробы его вещества, мы итак неплохо осведомлены об его составе.
Сравнение размеров Солнца с размерами планет Солнечной системы
Знание физики и возможности спектрального анализа дают нам возможность точно сказать, из чего состоит Солнце: 70% от его массы составляет водород, 27% – гелий, другие элементы (углерод, кислород, азот, железо, магний и другие) – 2,5%.
Однако, только этой сухой статистикой наши знания, к счастью, не ограничиваются.
Что находится внутри Солнца
Согласно современным расчетам температура в недрах Солнца достигает 15 – 20 миллионам градусов Цельсия, плотность вещества звезды достигает 1,5 грамма на кубический сантиметр.
Источник энергии Солнца – постоянно идущая ядерная реакция, протекающая глубоко под поверхностью, благодаря которой и поддерживается высокая температуру светила. Глубоко под поверхностью Солнца водород превращается в гелий в следствии ядерной реакции с сопутствующим выделением энергии.
“Зона ядерного синтеза” Солнца называется солнечным ядром и имеет радиус примерно 150—175 тыс. км (до 25 % радиуса Солнца). Плотность вещества в солнечном ядре в 150 раз превышает плотность воды и почти в 7 раз – плотность самого плотного вещества на Земле: осмия.
Ученым известны два вида термоядерных реакций протекающих внутри звезд: водородный цикл и углеродный цикл. На Солнце преимущественно протекает водородный цикл, который можно разбить на три этапа:
- ядра водорода превращаются в ядра дейтерия (изотоп водорода)
- ядра водорода превращаются в ядра неустойчивого изотопа гелия
- продукты первой и второй реакции связываются с образованием устойчивого изотопа гелия (Гелий-4).
Каждую секунду в излучение превращаются 4,26 миллиона тонн вещества звезды, однако по сравнению с весом Солнца, даже это невероятное значение так мало, что им можно пренебречь.
Внутреннее строение недр Солнца: ядро, зона конвекции, фото и хромосфера, солнечная корона
Выход тепла из недр Солнца совершается путем поглощения электромагнитного излучения, приходящего снизу и его дальнейшего переизлучения.
Ближе к поверхности солнца излучаемая из недр энергия переносится преимущественно в зоне конвекции Солнца с помощью процесса конвекции – перемешивании вещества (теплые потоки вещества поднимаются ближе к поверхности, холодные же опускаются).
Зона конвекции залегает на глубине около 10% солнечного диаметра и доходит почти до поверхности звезды.
Атмосфера Солнца
Выше зоны конвекции начинается атмосфера Солнца, в ней перенос энергии снова происходит с помощью излучения.
Фотосферой называют нижний слой солнечной атмосферы – видимую поверхность Солнца. Её толщина соответствует оптической толщине приблизительно в 2/3 единицы, а в абсолютных величинах фотосфера достигает толщины 100-400 км. Именно фотосфера является источником видимого излучения Солнца, температура составляет от 6600 К (в начале) до 4400 К (у верхнего края фотосферы).
На самом деле Солнце выглядит как идеальный круг с четкими границами только потому, что на границе фотосферы его яркость падает в 100 раз за менее чем одну секунду дуги. За счет этого края Солнечного диска заметно менее ярки нежели центр, их яркость всего 20% от яркости центра диска.
Хромосфера – второй атмосферный слой Солнца, внешняя оболочка звезды, толщиной около 2000 км, окружающая фотосферу. Температура хромосферы увеличивается с высотой от 4000 до 20 000 К. Наблюдая Солнце с Земли, мы не видим хромосферу из-за малой плотности. Её можно наблюдать только во время солнечных затмений – интенсивное красное свечение вокруг краев солнечного диска, это и есть хромосфера звезды.
Солнечная корона – последняя внешняя оболочка солнечной атмосферы. Корона состоит из протуберанцев и энергетических извержений, исходящих и извергающихся на несколько сотен тысяч и даже более миллиона километров в пространство, образуя солнечный ветер. Средняя корональная температура составляет до 2 млн К, но может доходить и до 20 млн К. Однако, как и в случае с хромосферой – с земли солнечная корона видна только во время затмений. Слишком малая плотность вещества солнечной короны не позволяет наблюдать её в обычных условиях.
Солнечная корона во всей красе видна только по время солнечных затмений
Солнечный ветер
Солнечный ветер – поток заряженных частиц (протонов и электронов), испускаемых нагретыми внешними слоями атмосферы звезды, который простирается до границ нашей планетарной системы. Светило ежесекундно теряет миллионы тонн своей массы, из-за этого явления.
Около орбиты планеты Земля скорость частиц солнечного ветра достигает 400 километров в секунду (они перемещаются по нашей звездной системе со сверхзвуковой скоростью), а плотность солнечного ветра от нескольких до нескольких десятков ионизированных частиц в кубическом сантиметре.
Именно солнечный ветер нещадно “треплет” атмосферу планет, “выдувая” содержащиеся в ней газы в открытый космос, он же во многом ответственен за “хвосты” комет. Противостоять солнечному ветру Земле позволяет магнитное поле планеты, которое служит невидимой защитой от солнечного ветра и препятствует оттоку атомов атмосферы в открытый космос. При столкновении Солнечного ветра с магнитным полем планеты происходит оптическое явление, которое на Земле мы называем – полярное сияние, сопровождаемое магнитными бурями.
Впрочем, неоспорима и польза солнечного ветра – именно он “сдувает” из Солнечной системы и космическую радиацию галактического происхождения – а следовательно оберегает нашу звездную систему от внешних, галактических излучений.
Глядя на красоту полярных сияний, трудно поверить, что эти всполохи – видимый признак солнечного ветра и магнитосферы Земли
Источник
Атмосфера Солнца
Солнце является одной из значимых звёзд нашей галактической системы под названием Млечный путь. В Солнечной системе это единственное светило, вокруг которого обращаются прочие объекты – спутники, планеты, астероиды, кометы, пыль из космоса. В статье будет рассмотрена атмосфера Солнца и её практическое значение для этого гигантского огненного шара.
Описательные характеристики
Атмосфера Солнца во многом определяется его составом. В нем присутствуют следующие элементы:
- водород, занимающий 73% массы;
- гелий, на который приходится 25% веса;
- прочие элементы, имеющие иную концентрацию.
1 млн. водородных атомов включает в себя:
- 98 000 гелиевых атомов;
- 851 кислородных элементов;
- 398 атомов углерода;
- 123 – неона;
- 100 – азота;
- 47 – железа;
- и т. д.
На массу светила приходится 99,866% массы всей Солнечной системы. Наша галактическая группа включает в свой состав 100-400 млрд звёзд. При этом 85% их являются менее яркими в сравнении с Солнцем. Как и все они, наше естественное светило производит выработку энергии за счёт реакции термоядерного синтеза. Выработка значительной её части происходит в ходе синтеза водорода, гелия.
Солнце является звездой, расположенной к Земле ближе всего. Средняя удалённость между объектами составляет 149,6 млн км. Значение его орбитальной скорости составляет 217 километров в секунду. На прохождение одного светового года ему требуется 1400 земных лет. На сегодняшний день звезда располагается в области внутреннего края рукава Ориона. Среди всех светил, имеющих отношение к 50-ти наиболее близким системам, Солнце занимает по яркости почётную четвёртую строчку.
Фотосфера
Атмосфера Солнца состоит из нескольких слоёв, одним из них является фотосфера. Она представлена видимой поверхностью, которая извергает базовую часть излучения. Слой обладает толщиной, равной 100-400 км, температурным значением, составляющим 6 600 К (минимум). Именно по этой части происходит определение размеров Солнца. Газ, находящийся здесь, является разреженным, а скоростное значение вращения зависит от конкретной области. В зоне экватора один оборот протекает за 24 дня, в районе полюсов – за 30 дней.
Хромосфера
Солнечная атмосфера представлена также хромосферой. Она является оболочкой, окружающей фотосферу, имеющей толщину в 2000 км. Для верхней границы характерны постоянные горячие выбросы. Эта часть является видимой исключительно во время полного затмения, когда она появляется в красных тонах.
Корона
Эта часть является последней. Для неё характерно присутствует протуберанцев, энергетических извержений. Их выплеск обычно происходит в радиусе сотен тысяч километров, что провоцирует возникновение солнечного ветра. Солнечная атмосфера в этой области имеет более высокую температуру – 1 000 000 К минимум, которая может достигать отметки в 2 000 000 К. В некоторых областях значение повышается до 8-9 тыс. Кельвинов. Однако увидеть эту часть можно исключительно во время солнечного затмения.
Для данной области характерно изменение формы, которое пребывает в зависимости от цикла солнечной активности. На максимуме её форма круглая, на минимуме – вытянутая (вдоль экваториальной части).
Ветер
Солнечная атмосфера имеет такое явление, как ветер, представленный потоком ионизированных элементов, которые выбрасываются из звезды в различных направлениях на скорости от 400 километров в секунду. В качестве источника, из которого исходит ветер, выступает солнечная корона. Её температура настолько высока, что гравитационная сила не может удерживать вещество неподалёку от поверхности, и его часть оказывается в пространстве между планетами. Несмотря на относительную изученность, многие детали, связанные с солнечным ветром, остаются неясными до сих пор.
Таким образом, солнечная атмосфера состоит из нескольких слоёв, различных по толщине, температуре, свойствам.
Источник
Строение Солнца. 2. Атмосфера
Атмосфера солнца
4а.Фотосфера
Фотосфера — это нижний из трех слоев атмосферы Солнца, расположенный непосредственно на плотной массе невидимого газа конвективной области. Фотосфера образована раскаленным ионизированным газом, температура которого у основания близка к 10000°С , а у верхней границы, расположенной примерно в 300км выше, порядка 5000°С. Средняя температура фотосферы принимается в 5700°С. При такой температуре раскаленный газ излучает электромагнитную энергию преимущественно в оптическом (видимом) диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.
Через прозрачный воздух фотосферы в телескоп отчетливо просматривается ее основание — контакт с массой непрозрачного воздуха конвективной области. Поверхность раздела имеет зернистую структуру, называемую грануляцией. Зерна, или гранулы, имеют поперечники от 700 до 2000км. Положение, конфигурация и размеры гранул меняются. Наблюдения показали, что каждая гранула в отдельности выражена лишь какое-то короткое время (около 5-10 мин.), а затем исчезает, заменяясь новой гранулой. На поверхности Солнца гранулы не остаются неподвижными, а совершают нерегулярные движения со скоростью примерно 2 км/с. В совокупности светлые зерна (гранулы) занимают до 40% поверхности солнечного диска.
Процесс грануляции представляется как наличие в самом нижнем слое фотосферы непрозрачного газа конвективной области — сложной системы вертикальных круговоротов. Светлая ячея — это поступающая из глубины порция более разогретого газа по сравнению с уже охлажденной на поверхности, а потому и менее яркой, компенсационно погружающейся вниз. Яркость гранул на 10-20 процентов больше окружающего фона указывает на различие их температур в 200-300°С.
Образно грануляцию на поверхности Солнца можно сравнить с кипением густой жидкости типа расплавленного гудрона, когда со светлыми восходящими струями появляются пузырьки воздуха, а более темные и плоские участки характеризуют погружающиеся порции жидкости.
Исследования механизма передачи энергии в газовом шаре Солнца от центральной области к поверхности и ее излучение в космическое пространство показали, что она переносится лучами. Даже в конвективной зоне, где передача энергии осуществляется движением газов, большая часть энергии переносится излучением.
Таким образом, поверхность Солнца, излучающая энергию в космическое пространство в световом диапазоне спектра электромагнитных волн, — это разреженный слой газов фотосферы и просматривающаяся сквозь нее гранулированная верхняя поверхность слоя непрозрачного газа конвективной области. В целом зернистая структура, или грануляция, признается свойственной фотосфере — нижнему слою солнечной атмосферы.
4б.Хромосфера Солнца
При полном солнечном затмении у самого края затемненного диска Солнца видно розовое сияние — это хромосфера. Она не имеет резких границ, а представляет собой сочетание множества ярких выступов или языков пламени, находящихся в непрерывном движении. Хромосферу сравнивают иногда с горящей степью. Языки хромосферы называют спикулами. Они имеют в поперечнике от 200 до 2000км (иногда до 10.000км) и достигают в высоту нескольких тысяч километров. Их надо представлять себе как вырывающиеся из Солнца потоки плазмы (раскаленного ионизированного газа).
Установлено, что переход от фотосферы к хромосфере сопровождается скачкообразным повышением температуры от 5700°С до 8000 — 10000°С. К верхней же границе хромосферы, находящейся приблизительно на высоте 14.000км от поверхности Солнца, температура повышается до 15000 — 20000°С. Плотность вещества на таких высотах составляет всего 10-12 г/см3, т.е. в сотни и даже тысячи раз меньше, чем плотность нижних слоев хромосферы.
4с.Солнечная корона
Солнечная корона — внешняя атмосфера Солнца. Некоторые астрономы называют ее атмосферой Солнца. Она образована наиболее разреженным ионизированным газом. Простирается примерно на расстояние 5 диаметров Солнца, имеет лучистое строение, слабо светится. Ее можно наблюдать только во время полного солнечного затмения. Яркость солнечной короны примерно такая же, как у Луны в полнолуние, что составляет лишь около 5/1000.000 долей яркости Солнца. Корональные газы в высокой степени ионизированы, что определяет их температуру примерно в 1млн. градусов. Внешние слои короны излучают в космическое пространство корональный газ — солнечный ветер. Это второй энергетический (после лучистого электромагнитного) поток Солнца, получаемый планетами. Скорость удаления коронального газа от Солнца возрастает от нескольких километров в секунду у короны до 450 км/с на уровне орбиты Земли, что связано с уменьшением силы притяжения Солнца при увеличении расстояния. Постепенно разреживаясь по мере удаления от Солнца, корональный газ заполняет все межпланетное пространство. Он воздействует на тела Солнечной системы как непосредственно, так и через магнитное поле, которое несет с собой. Оно взаимодействует с магнитными полями планет. Именно корональный газ (солнечный ветер) является основной причиной полярных сияний на Земле и активности других процессов магнитосферы.
Источник