Внутреннее строение Солнца
Солнце – главная звезда нашей планетарной системы. Несмотря на относительную изученность, это светило вызывает среди учёных немало вопросов. Особого внимания заслуживает внутреннее строение Солнца. Из чего оно состоит, какой структурой и «консистенцией» обладает – будет рассмотрено в статье.
Особенности строения
Современные представления и убеждения гласят о том, что наша звезда включает в свой состав несколько концентрических сфер (областей). Каждая из них наделена своими особенностями. В схематическом разрезе можно увидеть не только внешние характеристики, но и внутренние параметры. Энергетический поток, который освобождается вследствие термоядерных реакций в ядре Солнца, постепенно прокладывает путь к его видимой зоне.
Её перенос, в свою очередь, происходит за счёт определённых процессов. Считается, что в ходе их протекания атомами поглощается, а затем повторно излучается и рассеивается излучение. То есть речь идёт о лучевом способе. После прохождения 80% пути, начиная от ядра и заканчивая поверхностью, газ утрачивает свойства стойкости. Поэтому впоследствии происходит перенос энергии посредством конвекции по направлению к видимой солнечной поверхности. По итогу он попадает в атмосферную часть.
Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только во время полного солнечного затмения.
Описание и характеристики
Внутреннее строение Солнца является слоистым или оболочечным. Оно включает в себя одновременно несколько областей. В центральной части располагается массивная ядерная часть, за ней идёт зона лучевого переноса энергетического потока, после этого следует конвективная область, и, в конечном счёте, атмосфера. Некоторые исследователи отмечают, что Солнце внутри включает в себя ещё и внешние области. Это корона, хромосфера, фотосфера. Однако другие астрономы к строению звезды относят исключительно корону и хромосферу.
Основные зоны Солнца
Чтобы иметь представление о том, каким является внутреннее строение Солнца, стоит остановиться на каждом его слое более подробно.
Это центральная область нашего светила. Она обладает радиусом, равным 150-175 тысяч километров. А это – порядка 20 или даже 25% всего солнечного радиуса. По сути, ядерная зона представляет собой реактор термоядерного типа, потому что в нём происходят одноимённые реакции. Изучая слои Солнца, в частности – ядро, можно отметить, что его плотность в 150 раз выше, чем у воды, а температурное значение превышает отметку в 14 000 000 Кельвинов.
Что касается «скоростного режима», в котором звезда вращается вокруг собственной оси, в ядерной области он значительно выше в сравнении с тем, что предполагает поверхность Солнца. Ежесекундно за счёт термоядерных явлений в излучение вовлекается 4,26 миллионов тонн всевозможных веществ. Однако топливного ресурса, возникающего за счёт действия звезды, достаточно для того, чтобы энергия «работала» в течение нескольких миллиардов лет.
Территория лучистого переноса
В этой части нашего естественного светила энергия переносится преимущественно посредством излучения и поглощения фотонов. При всем этом направленность каждого элемента, который излучен плазматическим слоем, не зависит от того, какие из них поглощались плазмой, а какие не поглощались. Поэтому есть вероятность проникновения в следующий плазменный слой в лучистой области, а также перемещения вниз, назад.
По описанным причинам временной интервал, за которой фотон, который изначально появился в ядре, достигает конвективной части светила, может составлять миллионы лет. В среднем этот отрезок времени для нашей главной звезды равен около 170 000 лет. По этой причине внутреннее строение Солнца вызывает среди учёных неподдельный интерес и многочисленные вопросы.
Конвективная зона
Следующая часть внешней области светила приходится на конвективную часть. Она располагается максимально близко к такому элементу, как поверхность Солнца. Чем ближе к ней, тем ниже становится плотность и температурный режим. Этих параметров становится недостаточно для того, чтобы в полной мере перенести энергию посредством повторного излучения. Вследствие этого появляется вихрь, в рамках которого плазма перемешивается, а энергии подступает к фотосфере.
По мере того как слои Солнца взаимодействуют между собой, наблюдается следующая картина. Вещество, относящееся к фотосфере, охлаждается на поверхности и погружается в глубину конвективной части. С другой стороны, элемент излучается из области лучевого переноса и впоследствии поднимается вверх. Оба эти процесса протекают достаточно быстро. В результате возникает процесс конвекции. Слой, расположенный под поверхностью, имеет толщину в 200 000 километров. По мере приближения к самой верхней части наблюдается падение температуры до отметки в 5800 К.
Дополнительные слои
Солнце внутри также включает в себя несколько дополнительных слоёв, хотя некоторыми учёными они не рассматриваются всерьёз.
Фотосфера
Это нижний атмосферный слой, находящийся в области плотной массы невидимого газового вещества конвективной области. Образование его произошло вследствие влияния ионизированного газового вещества с температурой до 10 000 К внутри и 5 000 К снаружи. Именно этот нижний атмосферный слой человеческим глазом воспринимается как ярко-жёлтый диск Солнца. А если воздух прозрачный, с помощью телескопа можно отчётливо просмотреть основание. Поверхность обладает зернистой структурой (грануляцией) с поперечниками от 700 до 2 000 км.
Рассматриваемый процесс характеризуется присутствием в нижнем слое газа непрозрачного типа, который выступает в качестве сложного механизма круговоротов, совершаемых вертикально. Образно этот процесс сравнивается с кипением густой жидкости. Получается, что солнечная поверхность, отдающая определённый энергетический поток в космос, представляет собой разреженный газовый слой.
Хромосфера
Солнце внутри также включает в себя хромосферу. Во время протекания полного затмения у крайней части диска можно наблюдать сияние. Это и есть хромосфера. Границы и очертания в ней отсутствуют. Всё, что она собой представляет – это комбинацию большого количества выступов, расположенных в непрерывном положении. Хромосфера на практике сравнивается с горячей степью, а её языки пламенны поперечно достигают размера в 200-2000 км.
Корона
Солнце внутри также состоит из короны. Она представляет собой его внешнюю атмосферную часть. Некоторые астрономы именуют её как атмосфера. Образование произошло за счёт влияния ионизированного газа, который является разреженным. Продолжительность этой области составляет 5 солнечных диаметров, а строение считается лучистым.
Корона имеет примерно такую же яркость, что и у Луны во время полнолуния. Если сравнивать с яркостью светила, эта величина составляет 5/1000000. За счёт внешних слоёв в космос происходит излучение газа – так называемого солнечного ветра. Это второй солнечный поток, образуемый планетами. Именно он выступает в качестве первоисточника полярных сияний на Земле.
Таким образом, Солнце внутри имеет сложное строение и состав и постоянно изучается учёными.
Источник
Строение Солнца. 1. Внутреннее
По современным представлениям, Солнце состоит из ряда концентрических сфер, или областей, каждая из которых обладает специфическими особенностями. Схематический разрез Солнца показывает его внешние особенности вместе с гипотетическим внутренним строением. Энергия, освобождаемая термоядерными реакциями в ядре Солнца, постепенно прокладывает путь к видимой поверхности светила. Она переносится посредством процессов, в ходе которых атомы поглощают, переизлучают и рассеивают излучение, т.е. лучевым способом. Пройдя около 80 процентов пути от ядра к поверхности, газ становится неустойчивым, и дальше энергия переносится уже конвекцией к видимой поверхности Солнца и в его атмосферу.
Внутреннее строение Солнца
Внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится 1.ядро, затем 2.область лучевого переноса энергии, далее 3.конвективная зона и, наконец, 4.атмосфера. К ней ряд исследователей относят три внешние области: 4а.фотосферу, 4б.хромосферу и 4с.корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону. Остановимся кратко на особенностях названных сфер.
1.Ядро — центральная часть Солнца со сверхвысоким давлением и температурой, обеспечивающими течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.
2.Область лучистого переноса энергии — находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так. Из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах — гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.
3.Конвективная область Солнца
Конвективная область — располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.
Источник
Внутреннее строение Солнца
Знаете ли вы, каково внутреннее строение Солнца? То, что мы можем разглядеть на дневном небе невооруженным глазом – всего лишь часть внешней оболочки звезды. Под ней скрываются самые мощные в Солнечной системе термоядерные процессы и слои плазмы, чья температура достигает десятки миллионов градусов Цельсия. Благодаря этому Солнце является главным поставщиком энергии для Земли и других планет в нашей звездной системе.
Во внутреннем строении Солнца наблюдается четкая зональность. Массивное солнечное ядро является эпицентром термоядерных реакций. В зоне лучистого переноса происходит теплопередача между нижними и верхними слоями солнечной плазмы. Конвективная зона отделяет внутреннюю оболочку Солнца от его атмосферы и передает тепловую энергию путем перемешивания плазменных потоков.
В статье мы опишем подробно каждую из трех зон и процессы, происходящие в них.
Солнечное ядро
Солнечное ядро – самое горячее и активное место в нашей звездной системе. Его размеры занимают четвертую часть всего Солнца, а плотность составляет 150*10 3 кг/куб. м. Температура в центре солнечного ядра достигает 14*10 6 градусов Цельсия.
Ежесекундно путем термоядерных реакций в солнечном ядре образуется порядка 5 млн. тонн элементарных частиц. Это коротковолновые гамма-кванты огромной энергетической мощности. Энергия, возникающая при их образовании, нагревает все остальные оболочки Солнца и распространяется за его пределы в виде света и потоков солнечного ветра. Земля поглощает ничтожно малую часть от всего солнечного излучения – 0,5*10 -9 .
По подсчетам исследователей, водородного топлива для поддержания процессов энерговыделения в Солнце хватит еще на 6,5 миллиардов лет. После окончания запасов водорода звезда перейдет в фазу красного карлика – его оболочки многократно увеличатся в размере, поглотив внутренние планеты Солнечной системы, а ядро разогреется до 100 млн. градусов Цельсия. По окончанию этого периода жизни звезды ее внешние оболочки образуют планетарную туманность, а ядро окончательно оформится в белого карлика, который будет постепенно угасать.
Зона лучистого переноса
В зоне лучистого переноса происходит дальнейшее перераспределение энергии термоядерных реакций ядра. Плотность среднего слоя мало отличается от плотности ядра Солнца. Поэтому перенос энергии может происходить лишь в виде поглощения и излучения квантов электромагнитного излучения. Переизлучение фотонов в зоне лучистого переноса происходит многократно, поэтому первичный ядерный фотон добирается до конвективной зоны за несколько сотен тысяч лет.
Температура в зоне лучистого переноса снижается от 7 до 2 млн. градусов Цельсия по мере удаления от центра.
Конвективная зона
Конвективная зона является границей между внутренними и внешними оболочками Солнца. Плотность частиц здесь гораздо ниже, чем в ядре, и поэтому перераспределение тепла происходит путем перемешивания потоков охлажденной у поверхности и нагретой на глубине плазмы. Данное явление называется конвекцией. Именно оно обусловливает развитие динамо-эффекта и образование магнитного поля Солнца.
Перемешивание плазмы в конвективной зоне – процесс упорядоченный. Она образует шестигранные столбы циркулирующего вещества. Их верхушки образуют грануляции на поверхности фотосферы – нижнего слоя солнечной атмосферы, а некоторые супергранулы заканчиваются в пределах короны Солнца. Скорость конвекции плазмы колеблется от 1 м/с до 1 км/с по мере приближения к атмосфере звезды. В слоях атмосферы звезды перераспределение энергии снова происходит путем лучистого переноса.
Конвективная зона – самая холодная среди внутренних зон Солнца — температура не превышает 5400° С. Толщина области конвекции — около 2*10 5 км. Здесь начинает происходить процесс ионизации атомов водорода и гелия, которые, проходя через оболочки атмосферы и полностью теряя электроны, превращаются в потоки солнечного ветра. Именно они обуславливают космическую погоду, а также северные сияния и магнитные бури на Земле.
Источник
Внутреннее строение Солнца
Мы не можем непосредственно заглянуть внутрь Солнца, позтому представление о его строении получаем только на основе теоретического анализа, используя наиболее обшие законы физики и такие характеристики Солнца, как масса, радиус, светимость.
По современным представлениям, внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится ядро, затем область лучевого переноса энергии, далее конвективная зона и, наконец, слои атмосферы Солнца. К ним ряд исследователей относят три внешние области: фотосферу, хромосферу и корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону.
Солнце не расширяется и не сжимается, оно находится в равновесии, так как силе гравитации, стремящейся сжать Солнце, препятствует сила газового давлення изнутри. Для оценок представим, что Солнце состоит из двух равных половинок, центры масс которых находятся на расстоянии порядка радиуса Солнца Ro. Считая, что все параметры, характеризующие вешество Солнца, одни и те же в различных его частях, можно, воспользовшись законом Менделеева — Клапейрона, определить давление газа на границе между двумя половинками: p=R*ρ/μ*T где газовая постоянная R = 8,31 Дж/(К*моль), μ — молярная масса вещества, ρ — его плотность и Т — абсолютная температура.
Высокое давление внутри Солнца обусловлено действием вышележащих слоев. Силы тяготения стремятся сжать Солнце. Им противодействует упругость горячего газа и давление излучения, идущие из недр. Эти силы стремятся расширить Солнце. Тяготение, с одной стороны, а упругость газов и давление излучения, с другой — уравновешивают друг друга. Равновесие имеет место во всех слоях от поверхности до центра Солнца. Такое состояние Солнца и других звезд называется гидростатическим равновесием.
В действительности и плотность и температура внутри Солнца меняются с расстоянием от его центра. В расчетах мы положим их равными средним значениям. Средняя плотность солнечного вещества ро =1,4*10 3 кг/м 3 , а так как оно состоит в основном из атомарного водорода, μ= 10 -3 кг/моль. (Однако следует помнить, что внутри Солнца водород ионизован, поэтому молярная масса будет в два раза меньше.)
То, что средняя температура Солнца близка к 8*10 6 К, а на поверхности Солнца она равна 6000 К, означает, что температура Солнца меняется с глубиной. Более точные расчеты показывают, что температура в центре Солнца достигает значения 15 млн. кельвинов, на расстоянии 0,7R температура падает до 10 6 К. Плотность вещества в центре Солнца 1,5*10 5 кг/м3, что более чем в 100 раз выше его средней плотности.
Термоядерные реакции идут наиболее эффективно в центральной области Солнца радиусом, равным 0,3R. Эта область получила название ядра. В более внешних слоях температура не достаточна для протекания термоядерных реакций.
Солнечное вещество в основном состоит из водорода. При огромных давлениях и температурах протоны (ядра водорода) движутся со скоростями в сотни километров в секунду. Внутри Солнца, в его ядре (на расстояниях до 0,3 радиуса от центра) установились условия, благоприятные для протекания термоядерных реакций превращения атомов легких химических элементов в атомы более тяжелых элементов. В результате такой реакции из ядер водорода образуется гелий. Для образования одного ядра гелия требуется 4 ядра водорода.
Ядро имеет радиус не более трети общего радиуса Солнца. Однако в его объеме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца. Но энергия горячего ядра должна как-то выходить наружу, к поверхности Солнца. Существуют различные способы передачи энергии в зависимости от физических условий среды.
Энергия, выделившаяся в ядре Солнца, переносится наружу, к поверхности двумя способами: лучистым и конвективным. В первом случае энергия переносится излучением; во втором — при механических движениях нагретых масс вещества.
Лучистый перенос энергии происходит в ядре и далее вплоть до расстояния (0,6— 0,7) R от центра Солнца, далее к поверхности энергия переносится конвекцией.
Интересен сам механизм лучистого переноса. Гамма-излучение, возникающее при термоядерных реакциях, сразу поглощается атомами окружающего вещества. Атом при этом возбуждается, а затем быстро излучает гамма-квант, переходя в исходное состояние. Излученный атомом квант уже движется в другом направлении. Далее это излучение поглощается и переизлучается другими атомами; направление излучения все время меняется. Таким образом, излучение движется наружу не по прямой вдоль радиуса, а по ломаной, длина которой значительно больше радиуса Солнца. Пройти радиус Солнца по прямой излучение может почти за 2 с, в действительности путь излучения настолько удлиняется, что энергия, переносимая им, выходит наружу за 10 млн. лет. Кроме этого, на своем долгом пути наружу излучение претерпевает такие изменения, что гамма-лучи, которые возникли в центре Солнца, выходят наружу в форме излучения видимого диапазона длин волн.
Конечно, астрономы ищут способы заглянуть внутрь Солнца и проверить теоретические представления о его строении. На этом пути им на помощь пришли физики, изучающие элементарные частицы. Дело в том, что при термоядерных реакциях синтеза гелия из водорода наряду с выделением энергии происходит рождение элементарных частиц — нейтрино. Выяснилось, что в отличие от излучения нейтрино практически не задерживается веществом. Возникая в недрах Солнца и распространяясь со скоростью света, они через 2 с покидают поверхность Солнца и через 8 мин достигают Земли. Если бы удалось измерить этот поток нейтрино от Солнца, то мы смогли бы непосредственно судить о физических процессах, протекающих внутри Солнца.
Для наблюдения солнечных нейтрино советский академик Б. Понтекорво предложил способ их обнаружения по наблюдениям ядер атомов аргона, образующихся при взаимодействии хлора с нейтрино. Для этого был изготовлен большой резервуар объемом 400 м3, наполненный жидким веществом, в состав которого входили атомы хлора. Так как атомы аргона могут образовываться из атомов хлора при их взаимодействии с быстрыми частицами, проникающими из космического пространства, то во избежание этого резервуар поместили в глубокой шахте. Для нейтрино толстый слой Земли не помеха, а космические частицы поглощаются им.
На что же рассчитывали астрономы, ставя такой эксперимент? Ожидаемый у Земли поток солнечных нейтрино легко оценить по солнечной светимости. Так как при образовании одного ядра атома гелия выделяется энергия связи ΔЕ = = 4,3*10 -12 Дж и излучаются два нейтрино, то легко подсчитать число ядер атомов гелия, образующихся в недрах Солнца каждую секунду. Для этого достаточно светимость Солнца I=4*10 26 Вт разделить на энергию связи. Умножая полученное частное на два, найдем число нейтрино, ежесекундно излучаемых Солнцем со всей его поверхности:
Выполнив вычисления, получим 2*10 23 нейтрино/с.
В результате взаимодействия этого потока нейтрино с хлором в резервуаре должно образоваться всего несколько десятков атомов аргона, которые и следует обнаружить химическим путем. Отсюда понятны трудности «вылавливания» этих десятков атомов аргона среди колоссального числа атомов, содержащихся в резервуаре. Исследования последних лет показали, что обнаруженный поток солнечных нейтрино в два-три раза меньше ожидаемого, но это пока не опровергает наших основных представлений о внутреннем строении Солнца. Во многом эти расхождения, определяются изученностью свойств нейтрино (например в последние годы появидись теоретические и экспериментальные указания на отличие массы покоя нейтрино от нуля), а также неопределенностью наших знаний о тонких деталях физических процессов, протекающих в солнечном ядре.
Источник