Строение Солнца. 1. Внутреннее
По современным представлениям, Солнце состоит из ряда концентрических сфер, или областей, каждая из которых обладает специфическими особенностями. Схематический разрез Солнца показывает его внешние особенности вместе с гипотетическим внутренним строением. Энергия, освобождаемая термоядерными реакциями в ядре Солнца, постепенно прокладывает путь к видимой поверхности светила. Она переносится посредством процессов, в ходе которых атомы поглощают, переизлучают и рассеивают излучение, т.е. лучевым способом. Пройдя около 80 процентов пути от ядра к поверхности, газ становится неустойчивым, и дальше энергия переносится уже конвекцией к видимой поверхности Солнца и в его атмосферу.
Внутреннее строение Солнца
Внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится 1.ядро, затем 2.область лучевого переноса энергии, далее 3.конвективная зона и, наконец, 4.атмосфера. К ней ряд исследователей относят три внешние области: 4а.фотосферу, 4б.хромосферу и 4с.корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону. Остановимся кратко на особенностях названных сфер.
1.Ядро — центральная часть Солнца со сверхвысоким давлением и температурой, обеспечивающими течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.
2.Область лучистого переноса энергии — находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так. Из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах — гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.
3.Конвективная область Солнца
Конвективная область — располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.
Источник
Внутреннее строение Солнца
Солнце – главная звезда нашей планетарной системы. Несмотря на относительную изученность, это светило вызывает среди учёных немало вопросов. Особого внимания заслуживает внутреннее строение Солнца. Из чего оно состоит, какой структурой и «консистенцией» обладает – будет рассмотрено в статье.
Особенности строения
Современные представления и убеждения гласят о том, что наша звезда включает в свой состав несколько концентрических сфер (областей). Каждая из них наделена своими особенностями. В схематическом разрезе можно увидеть не только внешние характеристики, но и внутренние параметры. Энергетический поток, который освобождается вследствие термоядерных реакций в ядре Солнца, постепенно прокладывает путь к его видимой зоне.
Её перенос, в свою очередь, происходит за счёт определённых процессов. Считается, что в ходе их протекания атомами поглощается, а затем повторно излучается и рассеивается излучение. То есть речь идёт о лучевом способе. После прохождения 80% пути, начиная от ядра и заканчивая поверхностью, газ утрачивает свойства стойкости. Поэтому впоследствии происходит перенос энергии посредством конвекции по направлению к видимой солнечной поверхности. По итогу он попадает в атмосферную часть.
Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооружённым глазом только во время полного солнечного затмения.
Описание и характеристики
Внутреннее строение Солнца является слоистым или оболочечным. Оно включает в себя одновременно несколько областей. В центральной части располагается массивная ядерная часть, за ней идёт зона лучевого переноса энергетического потока, после этого следует конвективная область, и, в конечном счёте, атмосфера. Некоторые исследователи отмечают, что Солнце внутри включает в себя ещё и внешние области. Это корона, хромосфера, фотосфера. Однако другие астрономы к строению звезды относят исключительно корону и хромосферу.
Основные зоны Солнца
Чтобы иметь представление о том, каким является внутреннее строение Солнца, стоит остановиться на каждом его слое более подробно.
Это центральная область нашего светила. Она обладает радиусом, равным 150-175 тысяч километров. А это – порядка 20 или даже 25% всего солнечного радиуса. По сути, ядерная зона представляет собой реактор термоядерного типа, потому что в нём происходят одноимённые реакции. Изучая слои Солнца, в частности – ядро, можно отметить, что его плотность в 150 раз выше, чем у воды, а температурное значение превышает отметку в 14 000 000 Кельвинов.
Что касается «скоростного режима», в котором звезда вращается вокруг собственной оси, в ядерной области он значительно выше в сравнении с тем, что предполагает поверхность Солнца. Ежесекундно за счёт термоядерных явлений в излучение вовлекается 4,26 миллионов тонн всевозможных веществ. Однако топливного ресурса, возникающего за счёт действия звезды, достаточно для того, чтобы энергия «работала» в течение нескольких миллиардов лет.
Территория лучистого переноса
В этой части нашего естественного светила энергия переносится преимущественно посредством излучения и поглощения фотонов. При всем этом направленность каждого элемента, который излучен плазматическим слоем, не зависит от того, какие из них поглощались плазмой, а какие не поглощались. Поэтому есть вероятность проникновения в следующий плазменный слой в лучистой области, а также перемещения вниз, назад.
По описанным причинам временной интервал, за которой фотон, который изначально появился в ядре, достигает конвективной части светила, может составлять миллионы лет. В среднем этот отрезок времени для нашей главной звезды равен около 170 000 лет. По этой причине внутреннее строение Солнца вызывает среди учёных неподдельный интерес и многочисленные вопросы.
Конвективная зона
Следующая часть внешней области светила приходится на конвективную часть. Она располагается максимально близко к такому элементу, как поверхность Солнца. Чем ближе к ней, тем ниже становится плотность и температурный режим. Этих параметров становится недостаточно для того, чтобы в полной мере перенести энергию посредством повторного излучения. Вследствие этого появляется вихрь, в рамках которого плазма перемешивается, а энергии подступает к фотосфере.
По мере того как слои Солнца взаимодействуют между собой, наблюдается следующая картина. Вещество, относящееся к фотосфере, охлаждается на поверхности и погружается в глубину конвективной части. С другой стороны, элемент излучается из области лучевого переноса и впоследствии поднимается вверх. Оба эти процесса протекают достаточно быстро. В результате возникает процесс конвекции. Слой, расположенный под поверхностью, имеет толщину в 200 000 километров. По мере приближения к самой верхней части наблюдается падение температуры до отметки в 5800 К.
Дополнительные слои
Солнце внутри также включает в себя несколько дополнительных слоёв, хотя некоторыми учёными они не рассматриваются всерьёз.
Фотосфера
Это нижний атмосферный слой, находящийся в области плотной массы невидимого газового вещества конвективной области. Образование его произошло вследствие влияния ионизированного газового вещества с температурой до 10 000 К внутри и 5 000 К снаружи. Именно этот нижний атмосферный слой человеческим глазом воспринимается как ярко-жёлтый диск Солнца. А если воздух прозрачный, с помощью телескопа можно отчётливо просмотреть основание. Поверхность обладает зернистой структурой (грануляцией) с поперечниками от 700 до 2 000 км.
Рассматриваемый процесс характеризуется присутствием в нижнем слое газа непрозрачного типа, который выступает в качестве сложного механизма круговоротов, совершаемых вертикально. Образно этот процесс сравнивается с кипением густой жидкости. Получается, что солнечная поверхность, отдающая определённый энергетический поток в космос, представляет собой разреженный газовый слой.
Хромосфера
Солнце внутри также включает в себя хромосферу. Во время протекания полного затмения у крайней части диска можно наблюдать сияние. Это и есть хромосфера. Границы и очертания в ней отсутствуют. Всё, что она собой представляет – это комбинацию большого количества выступов, расположенных в непрерывном положении. Хромосфера на практике сравнивается с горячей степью, а её языки пламенны поперечно достигают размера в 200-2000 км.
Корона
Солнце внутри также состоит из короны. Она представляет собой его внешнюю атмосферную часть. Некоторые астрономы именуют её как атмосфера. Образование произошло за счёт влияния ионизированного газа, который является разреженным. Продолжительность этой области составляет 5 солнечных диаметров, а строение считается лучистым.
Корона имеет примерно такую же яркость, что и у Луны во время полнолуния. Если сравнивать с яркостью светила, эта величина составляет 5/1000000. За счёт внешних слоёв в космос происходит излучение газа – так называемого солнечного ветра. Это второй солнечный поток, образуемый планетами. Именно он выступает в качестве первоисточника полярных сияний на Земле.
Таким образом, Солнце внутри имеет сложное строение и состав и постоянно изучается учёными.
Источник
Внутреннее строение Солнца
Внутреннее строение Солнца гораздо сложнее, чем мы можем себе представить. Днем на небосводе мы видим лишь небольшую часть внешней оболочки нашей звезды, но что творится под ней, увидеть невозможно. Внутри звезды находятся громадные слои плазмы, в которых протекают различные термоядерные процессы. Температура там достигает нескольких десятков миллионов градусов по Цельсию, что позволяет Солнцу обеспечивать энергией не только нашу планету, но и все остальные, вращающиеся вокруг него.
Внутри звезды существуют несколько областей, которые сильно отличаются друг от друга. Сразу под оболочкой находится конвективная зона, в которой протекают потоки плазмы, далее расположена область лучистого переноса, распределяющая энергию между остальными слоями звезды. В центре Солнца находится ядро, в котором протекают бурные термоядерные реакции. А сейчас давайте подробнее поговорим о каждой составляющей внутреннего строения Солнца.
Изображение Солнца в разрезе
Солнечное ядро
Ядро нашей звезды является самым горячим местом не только в ней, но и во всей Солнечной системе. Оно занимает четверть всего объема Солнца. Его температура в самом центре достигает 14 миллионов градусов по Цельсию, а плотность – около 150 000 кг/м 3 .
В солнечном ядре беспрерывно протекают различные термоядерные реакции, формирующие миллионы тонн элементарных частиц каждую секунду. Синтез этих частиц выделяет колоссальное количество энергии, которая не только нагревает всю звезду, но и распространяется далеко за ее пределы, доходя до планет в виде света и солнечного ветра. Наша Земля потребляет мизерное количество всей энергии, исходящей от Солнца. Чтобы поглощать и распределять все солнечное излучение, понадобится оборудование небывалых масштабов, например, известная многим Сфера Дайсона.
Изображение Солнца с разделением составляющих
Как известно, вечных двигателей во Вселенной не существует, и солнечное ядро не исключение. Когда-нибудь в нем перестанут протекать термоядерные реакции, так как запасы водорода звезды будут исчерпаны. Тогда Солнце начнет расширяться до тех пор, пока не превратиться в красного гиганта. За это время звезда успеет поглотить несколько планет нашей системы, включая Землю. Затем солнечное ядро разогреется до 100 миллионов градусов по Цельсию, внешняя оболочка превратится в туманность, а ядро – в белого карлика, который начнет постепенно гаснуть и будет делать это в течение миллиардов лет. На этом Солнечная система официально погибнет. Но переживать не стоит, так как водорода в Солнце хватит еще на 6,5 миллиардов лет термоядерных реакций.
Зона лучистого переноса
Следующая область Солнца распределяет энергию, образующуюся при протекании термоядерных реакций. Зона лучистого переноса почти такая же плотная, как и само ядро, а ее температура колеблется между 2 и 7 миллионами градусов по Цельсию в зависимости от приближения к ядру. Интересно то, что перераспределение энергии происходит не один раз, поэтому первый ядерный фотон, появившийся после сразу реакции, доходит до конвективной зоны только через пару сотен тысяч лет.
Внутреннее строение Солнца
Конвективная зона
На границе между внешней оболочкой и областью лучистого переноса находится конвективная зона. Здесь плотность уже заметно ниже, чем в ядре, а температура держит на уровне около 5000-5400°C. В этой зоне происходит смешивание горячих и более холодных потоков плазмы, которое называется конвекцией. Именно этот процесс ответственен за образование магнитного поля звезды. Также в конвективной зоне проходит ионизация атомов водорода и гелия. Именно так и образуется солнечный ветер, который вызывает на нашей планете магнитные бури и северное сияние.
Источник
Внутреннее строение Солнца
Знаете ли вы, каково внутреннее строение Солнца? То, что мы можем разглядеть на дневном небе невооруженным глазом – всего лишь часть внешней оболочки звезды. Под ней скрываются самые мощные в Солнечной системе термоядерные процессы и слои плазмы, чья температура достигает десятки миллионов градусов Цельсия. Благодаря этому Солнце является главным поставщиком энергии для Земли и других планет в нашей звездной системе.
Во внутреннем строении Солнца наблюдается четкая зональность. Массивное солнечное ядро является эпицентром термоядерных реакций. В зоне лучистого переноса происходит теплопередача между нижними и верхними слоями солнечной плазмы. Конвективная зона отделяет внутреннюю оболочку Солнца от его атмосферы и передает тепловую энергию путем перемешивания плазменных потоков.
В статье мы опишем подробно каждую из трех зон и процессы, происходящие в них.
Солнечное ядро
Солнечное ядро – самое горячее и активное место в нашей звездной системе. Его размеры занимают четвертую часть всего Солнца, а плотность составляет 150*10 3 кг/куб. м. Температура в центре солнечного ядра достигает 14*10 6 градусов Цельсия.
Ежесекундно путем термоядерных реакций в солнечном ядре образуется порядка 5 млн. тонн элементарных частиц. Это коротковолновые гамма-кванты огромной энергетической мощности. Энергия, возникающая при их образовании, нагревает все остальные оболочки Солнца и распространяется за его пределы в виде света и потоков солнечного ветра. Земля поглощает ничтожно малую часть от всего солнечного излучения – 0,5*10 -9 .
По подсчетам исследователей, водородного топлива для поддержания процессов энерговыделения в Солнце хватит еще на 6,5 миллиардов лет. После окончания запасов водорода звезда перейдет в фазу красного карлика – его оболочки многократно увеличатся в размере, поглотив внутренние планеты Солнечной системы, а ядро разогреется до 100 млн. градусов Цельсия. По окончанию этого периода жизни звезды ее внешние оболочки образуют планетарную туманность, а ядро окончательно оформится в белого карлика, который будет постепенно угасать.
Зона лучистого переноса
В зоне лучистого переноса происходит дальнейшее перераспределение энергии термоядерных реакций ядра. Плотность среднего слоя мало отличается от плотности ядра Солнца. Поэтому перенос энергии может происходить лишь в виде поглощения и излучения квантов электромагнитного излучения. Переизлучение фотонов в зоне лучистого переноса происходит многократно, поэтому первичный ядерный фотон добирается до конвективной зоны за несколько сотен тысяч лет.
Температура в зоне лучистого переноса снижается от 7 до 2 млн. градусов Цельсия по мере удаления от центра.
Конвективная зона
Конвективная зона является границей между внутренними и внешними оболочками Солнца. Плотность частиц здесь гораздо ниже, чем в ядре, и поэтому перераспределение тепла происходит путем перемешивания потоков охлажденной у поверхности и нагретой на глубине плазмы. Данное явление называется конвекцией. Именно оно обусловливает развитие динамо-эффекта и образование магнитного поля Солнца.
Перемешивание плазмы в конвективной зоне – процесс упорядоченный. Она образует шестигранные столбы циркулирующего вещества. Их верхушки образуют грануляции на поверхности фотосферы – нижнего слоя солнечной атмосферы, а некоторые супергранулы заканчиваются в пределах короны Солнца. Скорость конвекции плазмы колеблется от 1 м/с до 1 км/с по мере приближения к атмосфере звезды. В слоях атмосферы звезды перераспределение энергии снова происходит путем лучистого переноса.
Конвективная зона – самая холодная среди внутренних зон Солнца — температура не превышает 5400° С. Толщина области конвекции — около 2*10 5 км. Здесь начинает происходить процесс ионизации атомов водорода и гелия, которые, проходя через оболочки атмосферы и полностью теряя электроны, превращаются в потоки солнечного ветра. Именно они обуславливают космическую погоду, а также северные сияния и магнитные бури на Земле.
Источник