Меню

Во сколько раз планета юпитер превосходит по размерам солнце логика

Во сколько раз планета юпитер превосходит по размерам солнце логика

1. Что такое вопрос? В чём заключается близость вопроса и суждения?

2. Чем отличаются исследовательские вопросы от информационных? Приведите по пять примеров исследовательских и информационных вопросов.

3. Что представляют собой категориальные и пропозициональные вопросы? Приведите по пять примеров категориальных и пропозициональных вопросов.

4. Охарактеризуйте приведённые ниже вопросы с точки зрения их принадлежности к исследовательским или информационным, а также – категориальным или пропозициональным:

1) Когда был открыт закон всемирного тяготения?

2) Смогут ли жители Земли расселиться на других планетах Солнечной системы?

3) В каком году родился Бонапарт Наполеон?

4) Каково будущее человечества?

5) Возможно ли предотвратить третью мировую войну?

5. Какова логическая структура вопроса? Приведите пример категориального исследовательского вопроса и выделите в нём основную (базисную) и искомую части. Сделайте то же самое с категориальным информационным вопросом, пропозициональным исследовательским вопросом и пропозициональным информационным вопросом.

6. Какие вопросы являются логически корректными, а какие – некорректными? Приведите по пять примеров логически корректных и некорректных вопросов. Может ли быть у логически корректного вопроса ложная основная часть? Достаточно ли для определения корректного вопроса требования истинности его основной части?

Что объединяет логически корректные категориальные и пропозициональные вопросы?

7. Дайте ответ, какие из приведённых ниже вопросов являются логически корректными, а какие некорректными:

1) Во сколько раз планета Юпитер превосходит по размерам Солнце?

2) Какова площадь Тихого океана?

3) В каком году Владимир Владимирович Маяковский написал поэму «Облако в штанах»?

4) Как долго продолжалась плодотворная совместная научная работа Исаака Ньютона и Альберта Эйнштейна?

5) Чему равна длина экватора земного шара?

Источник

Во сколько раз планета юпитер превосходит по размерам солнце логика

Краткий курс логики: Искусство правильного мышления

Логика – один из обязательных предметов в высших учебных заведениях. В последнее время она также изучается в некоторых средних учебных заведениях. Практика показывает: тем, кто познакомился с логикой в школьные годы, намного легче осваивать эту науку в вузе. Книга состоит из четырёх основных глав, теста, ста занимательных задач. Первые три главы посвящены логическим формам: понятию, суждению и умозаключению, четвёртая – рассказывает о важнейших законах логики и распространённых нарушениях этих законов, которые делают наше мышление запутанным, речь – неясной, а значит, мешают полноценно общаться и понимать друг друга. Каждую тему завершают вопросы и задания для самопроверки и закрепления материала. Примеры, содержащиеся в книге, показывают практическую значимость логики для современного человека.

Тест состоит из ста заданий закрытого типа (при нескольких вариантах ответа на каждый вопрос, только один является правильным). Для выполнения теста обязательны теоретические знания по логике.

Сто занимательных логических задач, представленных в книге, различаются по типу построения и уровню сложности. Объединяет их то, что для правильного решения задач требуется нестандартный подход и творческая работа мысли. Задачи направлены на развитие мышления, памяти, внимания и воображения; они могут развлечь в часы досуга. Для решения задач не обязательны теоретические знания по логике, достаточно жизненного опыта и смекалки, т. е. интуитивной логики, которой в большей или меньшей степени обладают все люди, независимо от пола, возраста и уровня образования. Ко всем задачам приведены ответы и комментарии.

Книгу завершает список литературы, рекомендуемый для дальнейшего, более широкого изучения предмета.

Надеемся, что книга вам понравится, а изучение логики станет интересным и увлекательным.

В словаре приведены определения наиболее важных логических терминов, его можно рассматривать как конспект курса логики, построенный по алфавитно-терминологическому принципу.

Логика – наука о формах и законах правильного мышления.

Эта наука появилась приблизительно в V в. до н. э. в Древней Греции. Её создателем считается знаменитый древнегреческий философ и учёный Аристотель. Логике 2,5 тысячи лет, однако она до сих пор сохраняет своё практическое значение. Многие науки и искусства Древнего мира навсегда ушли в прошлое и представляют для нас только «музейное» значение, интересны исключительно как памятники старины, но некоторые из них пережили века, и в настоящее время мы продолжаем ими пользоваться. К их числу относится геометрия Евклида (в школе мы изучаем именно её) и логика Аристотеля. В XIX в. появилась и стала быстро развиваться символическая (математическая, современная) логика, которая является разделом высшей математики. Однако наша книга посвящена исключительно аристотелевской логике.

Читайте также:  Попрошу тебя чтобы солнце грело phonk

Так зачем нам нужна логика, какую роль она играет в нашей жизни? Логика помогает нам правильно строить свои мысли и верно их выражать, убеждать других людей и лучше понимать собеседника, объяснять и отстаивать свою точку зрения, избегать ошибок в рассуждениях.

Каждый из нас хорошо знает, что по содержанию человеческое мышление бесконечно многообразно, ведь мыслить (думать) можно о чём угодно, например, об устройстве мира и происхождении жизни на Земле, о прошлом человечества и его будущем, о прочитанных книгах и просмотренных фильмах, о сегодняшних занятиях и завтрашнем отдыхе… Но самое главное заключается в том, что наши мысли возникают и строятся по одним и тем же законам, подчиняются одним и тем же принципам, укладываются в одни и те же схемы или формы. Причём если содержание нашего мышления чрезвычайно разнообразно, то форм, в которых выражается это разнообразие, совсем немного.

Приведём простой пример. Рассмотрим три совершенно различных по содержанию высказывания: «Все караси – это рыбы», «Все треугольники – это геометрические фигуры», «Все стулья – это предметы мебели». Несмотря на различное содержание, у этих высказываний есть нечто общее, что-то их объединяющее. Что? Их объединяет форма. Отличаясь по содержанию, они сходны по форме – каждое из трёх высказываний строится по форме: «Все A – это B», где A и B – какие-либо предметы. Понятно, что само высказывание: «Все A – это B», – лишено всякого содержания. Это высказывание представляет собой чистую форму, которую можно наполнить любым содержанием, например: «Все сосны – это деревья», «Все города – это населённые пункты», «Все школы – это учебные заведения», «Все тигры – это хищники».

Другой пример: возьмём три различных по содержанию высказывания: «Если наступает осень, то опадают листья», «Если завтра пройдёт дождь, то на улице будут лужи», «Если вещество – металл, то оно электропроводно». Будучи непохожими друг на друга по содержанию, эти высказывания сходны между собой тем, что строятся по одной и той же форме: «Если A, то B». Понятно, что к этой форме можно подобрать огромное количество различных содержательных высказываний, например: «Если не подготовиться к контрольной работе, то можно получить двойку», «Если взлётная полоса покрыта льдом, то самолёты не могут взлетать», «Если слово стоит в начале предложения, то его надо писать с большой буквы».

Логика не интересуется содержанием мышления (им занимаются другие науки), она изучает только формы мышления; её интересует не то, что мы мыслим, а то, как мы мыслим, поэтому она часто называется формальной логикой. Аристотелевскую (формальную) логику также часто называют традиционной.

Если по содержанию высказывание: «Все комары – это насекомые», – является нормальным, а высказывание: «Все Чебурашки – это инопланетяне», – абсурдным, то для логики эти два высказывания равноценны, так как она занимается формами мышления, а форма у этих высказываний одна и та же: «Все A – это B».

Форма мышления – это способ выражения мыслей, или схема их построения.

Существует всего три формы мышления:

1. Понятие – это форма мышления, которая обозначает какой-либо объект или признак объекта. Примеры понятий: карандаш, растение, небесное тело, химический элемент, мужество, глупость, нерадивость.

2. Суждение – это форма мышления, которая состоит из понятий, связанных между собой, и что-либо утверждает или отрицает. Примеры суждений: «Все планеты являются небесными телами», «Некоторые школьники – это двоечники», «Все треугольники не являются квадратами».

Читайте также:  Аудиокнига сергея алексеева стоящий у солнца

3. Умозаключение – это форма мышления, в которой из двух или нескольких исходных суждений (посылок) вытекает новое суждение (вывод).

В логике принято располагать посылки и вывод друг под другом и отделять посылки от вывода чертой.

Источник

Логика. Учебное пособие (23 стр.)

23. Что представляет собой логическая процедура формализации высказывания или рассуждения? Придумайте какое-нибудь рассуждение и совершите его формализацию. Формализуйте следующие рассуждения.

а) Если какое-либо вещество является металлом, то оно электропроводно. Медь является металлом. Следовательно, медь электропроводна.

б) Известный английский философ Фрэнсис Бэкон жил в XVII веке или в XV веке, или в XIII веке. Фрэнсис Бэкон жил в XVII веке. Следовательно он не жил ни в XV веке, ни в XIII веке.

в) Если ты не упрям, то ты можешь изменить свое мнение. Если же ты можешь изменить свое мнение, то ты способен признать данное суждение ложным. Следовательно, если ты не упрям, то ты способен признать данное суждение ложным.

г) Если сумма внутренних углов геометрической фигуры равна 180° то такая фигура является треугольником. Сумма внутренних углов данной геометрической фигуры не равна 180°. Следовательно, данная геометрическая фигура не является треугольником.

д) Леса бывают хвойными или лиственными, или смешанными. Этот лес не лиственный и не хвойный. Следовательно, этот лес смешанный.

24. Что представляют собой тождественно-истинные формулы, тождественно-ложные и выполнимые? Что можно сказать о рассуждении, если результатом его формализации является тождественно-истинная формула? Каким будет рассуждение, если его формализация выражается тождественно-ложной формулой? Каковы, с точки зрения логической верности, рассуждения, которые при формализации приводят к выполнимым формулам?

25. Каким образом возможно определить вид той или иной формулы, выражающей собой результат формализации некого рассуждения? По какому алгоритму строятся и заполняются таблицы истинности для логических формул? Придумайте какое-нибудь рассуждение, формализуйте его и с помощью таблицы истинности определите вид получившейся формулы.

26. С помощью построения таблицы истинности определите вид формулы, и, соответственно, – логическую верность того рассуждения, которое она выражает.

а) Если горная порода длительное время подвергается воздействию солнечных лучей, то она разрушается. Данная горная порода не подвергалась длительное время воздействию солнечных лучей. Следовательно, она не разрушается.

б) Когда человек льстит, он лжет. Когда человек лжет, он умышленно искажает истину. Следовательно, когда человек льстит, он умышленно искажает истину.

в) Призовое место займет команда «Спартак» или команда «Динамо». Однако, известно, что призовое место займет команда «Спартак». Следовательно, команда «Динамо» не займет призовое место.

г) Он изучает английский или немецкий. Он изучает английский. Следовательно, он не изучает немецкий.

27. Что такое вопрос? Почему вопрос не может быть суждением? В чем заключается близость вопроса и суждения? Чем отличаются исследовательские вопросы от информационных? Приведите по пять примеров исследовательских и информационных вопросов. Что представляют собой категориальные и пропозициональные вопросы? Приведите по пять примеров категориальных и пропозициональных вопросов.

28. Охарактеризуйте приведенные ниже вопросы с точки зрения их принадлежности к исследовательским или информационным, а также – категориальным или пропозициональным.

а) Когда был открыт закон всемирного тяготения?

б) Смогут ли жители Земли расселиться на других планетах Солнечной системы?

в) В каком году родился Наполеон?

г) Каково будущее человечества?

д) Возможно ли предотвратить третью мировую войну?

е) Что такое тригонометрия?

ж) Можно ли измерить расстояние от Земли до Луны?

з) Кто является создателем квантовой теории?

и) Чем отличаются естественные науки от гуманитарных?

к) Вел ли Древний Рим продолжительные завоевательные войны?

л) В чем смысл человеческой жизни?

м) Где находится самое высокое место земного шара?

н) Чему равна скорость света?

о) Что такое любовь?

п) Верно ли, что геоцентрическая картина мира появилась еще в древности?

р) Как зародилась жизнь во Вселенной?

с) Достигнут ли люди когда-нибудь всеобщего процветания?

29. Какова логическая структура вопроса? Приведите пример категориального исследовательского вопроса и выделите в нем основную (базисную) и искомую части. Сделайте то же самое с категориальным информационным вопросом, пропозициональным исследовательским вопросом и пропозициональным информационным вопросом. Какие вопросы являются логически корректными, а какие – некорректными? Приведите по пять примеров логически корректных и некорректных вопросов. Может ли быть у логически корректного вопроса ложная основная часть? Достаточно ли для определения корректного вопроса требования истинности его основной части? Что объединяет логически корректные категориальные и пропозициональные вопросы? Какие вопросы, среди логически некорректных являются провокационными или софистическими? Приведите три примера подобных вопросов.

Читайте также:  Как выглядят ожоги от солнца

30. Какие из приведенных ниже вопросов являются логически корректными, а какие некорректными?

а) Во сколько раз планета Юпитер превосходит по размерам Солнце?

б) Какова площадь Тихого океана?

в) В каком году В. В. Маяковский написал поэму «Облако в штанах»?

г) Как долго продолжалось плодотворная совместная научная работа Исаака Ньютона и Альберта Эйнштейна?

д) Чему равна длина экватора земного шара?

е) Каковы основные идеи знаменитого романа Л. Н. Толстого «Война и мир»?

ж) Под каким номером находится в периодической системе Д. И. Менделеева химический элемент меркурий?

з) В каком месте солнечной системы располагается галактика Млечный путь?

и) Быстрее ли звука движется свет?

Глава 3
Умозаключение

3.1. Что такое умозаключение?

Понятие, как мы уже знаем, является мысленным обозначением (отражением) какого-либо объекта или его признака, суждение представляет собой некое утвердительное или отрицательное высказывание об объектах, признаках, отношениях и т. п. Умозаключение – это третья (после понятия и суждения) форма мышления, в которой из двух или нескольких суждений, называемых посылками, вытекает новое суждение, называемое заключением, или выводом. В логике принято располагать посылки и вывод друг под другом и отделять посылки от вывода чертой:

Все живые организмы питаются влагой.

Все растения – это живые организмы.

Все растения питаются влагой.

В приведенном примере первые два суждения являются посылками, а третье – выводом. Понятно, что посылки должны быть истинными суждениями и должны быть связаны между собой. Если хотя бы одна из посылок ложна, то и вывод ложен:

Все птицы – это млекопитающие животные.

Все воробьи – это птицы.

Все воробьи – это млекопитающие животные.

Как видим, в приведенном примере ложность первой посылки приводит к ложному выводу, несмотря на то, что вторая посылка является истинной. Если посылки между собой не связаны, то вывод из них сделать невозможно. Например, из следующих двух посылок никакого вывода не следует:

Все планеты – это небесные тела.

Все сосны являются деревьями.

Обратим внимание на то, что умозаключения состоят из суждений, а суждения – из понятий, т. е. одна форма мышления входит в другую в качестве составной части.

Все умозаключения делятся на непосредственные и опосредованные. В непосредственных умозаключениях вывод делается из одной посылки. Например:

Все цветы являются растениями.

Некоторые растения являются цветами.

Верно, что все цветы являются растениями.

Неверно, что некоторые цветы не являются растениями.

Нетрудно догадаться, что непосредственные умозаключения представляют собой уже известные нам операции преобразования простых суждений и выводы об истинности простых суждений по логическому квадрату. Первый приведенный выше пример непосредственного умозаключения является преобразованием простого суждения путем обращения, а во втором примере по логическому квадрату из истинности суждения вида А делается вывод о ложности суждения вида О.

В опосредованных умозаключениях вывод делается из нескольких посылок. Например:

Все рыбы – это живые существа.

Все караси – это рыбы.

Все караси – это живые существа.

Поскольку непосредственные умозаключения представляют собой различные логические операции с суждениями, то под умозаключениями подразумеваются, прежде всего, опосредованные умозаключения. В дальнейшем речь пойдет именно о них.

Источник

Adblock
detector