Меню

Во время противостояния измеренный средний угловой радиус юпитера 23 4 среднее расстояние от солнца

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) — Определение расстояний до небесных тел в Солнечной системе и их размеров

вкл. 27 Ноябрь 2016 .

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) — Определение расстояний до небесных тел в Солнечной системе и их размеров

1. Закончите предложения.

Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а. е.), которая равна среднему расстоянию от Земли до Солнца.

1 а.е. = 149 600 000 км

Расстояние до объекта по времени прохождения радиолокационного сигнала можно определить по формуле , где S = 1/2·ct, где S — расстояние до объекта, c — скорость света, t — время прохождения светила.

2. Дайте определения понятиям «параллакс» и «базис»; на рисунке 10.1 покажите эти величины.

Параллакс — угол p, под которым из недоступного места (точка C) будет виден отрезок AB, называемый базисом.

Базис — тщательно измеренное расстояние от точки A (наблюдатель) до какой-либо достигнутой для наблюдения точки B.

3. Как с помощью понятий параллакса и базиса определить расстояние до удаленного недоступного объекта С (рис. 10.1)?

По величине базиса и прилегающим к нему углам треугольника ABC найти расстояние AC. При измерениях на Земле этот метод называют триангуляцией.

4. Угол, под которым со светила S виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом p (рис, 10.2). Определите расстояния: а) до Луны, если ее горизонтальный параллакс p = 57′; б) до Солнца, горизонтальный параллакс которого p = 8,8″.

5. Дополните рисунок 10.3 необходимыми построениями и выведите формулу, позволяющую определить радиус небесного светила (в радиусах Земли), если известны угловой радиус светила p и его горизонтальный параллакс p.

r = D · sin(ρ); R = D · sin(ρ)/sin(p) · R; r = ρ»/p» · R.

6. Решите следующие задачи (при расчетах считайте, что c = 3 · 10 5 км/с, R3 = 6370 км).

1. Радиолокатор зафиксировал отраженный сигнал от пролетающего вблизи Земли астероида через t — 0,667 с. На каком расстоянии от Земли находился в это время астероид?

2. Определите расстояние от Земли до Марса во время великого противостояния, когда его горизонтальный параллакс p = 23,2″.

3. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус p = 5,5″, а горизонтальный параллакс p = 14,4″. Определите линейный радиус Меркурия.

1. Сигнал, посланный радиолокатором к Венере, возвратился назад через t — 4 мин 36 с. На каком расстоянии в это время находилась Венера в своем нижнем соединении?

Ответ: 41 млн км.

2. На какое расстояние к Земле подлетал астероид Икар, если его горизонтальный параллакс в это время был p = 18,0″?

Ответ: 1,22 млн км.

3. С помощью наблюдений определили, что угловой радиус Марса p = 9,0″, а горизонтальный параллакс p = 16,9″. Определите линейный радиус Марса.

Источник

Во время противостояния измеренный средний угловой радиус юпитера 23,4’’ среднее расстояние от солнца а=5,2 а. е., определите линейный радиус планеты. спутник юпитера ио обращается вокруг планеты по круговой орбите с периодом 1,77 суток, определите массу и плотность юпитера

Ответы

1. Оскільки це протистояння, то положення планет виглядають так, як на рисунку. Отже a=5.2 а.о-1 а.о.=4.2 а.о.

Переведемо астрономічні одиниці в км. 1 а.о=150*10^6 км, тому 4.2 а.о=630*10^6 км.

Див.рис. Тоді tga=R/a, тому R=a*tga=71 500 км

Табличне значення радіусу Юпітера-70 000 км

2. Для того, щоб супутник не падав на планету він має обертатися з певною швидкістю, щоб сила тяжіння збоку Юпітера була така ж, як і відцентрова сила внаслідок обертання.

Знайдемо силу тяжіння збоку Юпітера F=GMm/R^2. Іо обертається на відстані R=422 000 км від центру Юпітера. Тоді відцентрова сила F=mv^2/R, де v-швидкість обертання v=2Rп/T. Прирівняємо формули

Тоді об’єм Юпітера можна знайти з формули V=4/3пR1^3, де R1-радіус Юпітера. Маючи його масу використаємо формулу для знаходження густини ρ=M/V=1323 кг/м^3.

1. Поскольку это противостояние, то положение планет выглядят так, как на рисунке. Итак a = 5.2 а.е-1 а.е. = 4.2 а.е.

Переведем астрономические единицы в км. 1 а.е = 150 * 10 ^ 6 км, поэтому 4.2 а.е = 630 * 10 ^ 6 км.

См.рис. Тогда tga = R / a, поэтому R = a * tga = 71500 км

Табличное значение радиуса Юпитера 70000 км

2. Для того, чтобы спутник не падал на планету он вращаться с определенной скоростью, чтобы сила притяжения со стороны Юпитера была такая же, как и центробежная сила вследствие вращения.

Найдем силу притяжения со стороны Юпитера F = GMm / R ^ 2. Ио вращается на расстоянии R = 422 000 км от центра Юпитера. Тогда центробежная сила F = mv ^ 2 / R, где v-скорость вращения v = 2Rп / T.

GM / R ^ 2 = 4п ^ 2R / T ^ 2, M = 4п ^ 2R ^ 3 / GT ^ 2 = 1.9 * 10 ^ 27

Тогда объем Юпитера можно найти из формулы V = 4 / 3пR1 ^ 3, где R1 радиус Юпитера. Имея его массу используем формулу для нахождения плотности ρ = M / V = ​​1323 кг / м ^ 3.

Источник

Во время противостояния измеренный средний угловой радиус Юпитера = 23,4″, среднее расстояние Юпитера от Солнца a=5.2 а. е., определите линейный радиус планеты. Спутник Юпитера Ио обращается вокруг планеты по круговой орбите с периодом 1,77 суток, определите массу и плотность Юпитера.

Ответы

1. Оскільки це протистояння, то положення планет виглядають так, як на рисунку. Отже a=5.2 а.о-1 а.о.=4.2 а.о.

Читайте также:  Идея основная мысль произведения кладовая солнца

Переведемо астрономічні одиниці в км. 1 а.о=150*10^6 км, тому 4.2 а.о=630*10^6 км.

Див.рис. Тоді tga=R/a, тому R=a*tga=71 500 км

Табличне значення радіусу Юпітера-70 000 км

2. Для того, щоб супутник не падав на планету він має обертатися з певною швидкістю, щоб сила тяжіння збоку Юпітера була така ж, як і відцентрова сила внаслідок обертання.

Знайдемо силу тяжіння збоку Юпітера F=GMm/R^2. Іо обертається на відстані R=422 000 км від центру Юпітера. Тоді відцентрова сила F=mv^2/R, де v-швидкість обертання v=2Rп/T. Прирівняємо формули

Тоді об’єм Юпітера можна знайти з формули V=4/3пR1^3, де R1-радіус Юпітера. Маючи його масу використаємо формулу для знаходження густини ρ=M/V=1323 кг/м^3.

1. Поскольку это противостояние, то положение планет выглядят так, как на рисунке. Итак a = 5.2 а.е-1 а.е. = 4.2 а.е.

Переведем астрономические единицы в км. 1 а.е = 150 * 10 ^ 6 км, поэтому 4.2 а.е = 630 * 10 ^ 6 км.

См.рис. Тогда tga = R / a, поэтому R = a * tga = 71500 км

Табличное значение радиуса Юпитера 70000 км

2. Для того, чтобы спутник не падал на планету он вращаться с определенной скоростью, чтобы сила притяжения со стороны Юпитера была такая же, как и центробежная сила вследствие вращения.

Найдем силу притяжения со стороны Юпитера F = GMm / R ^ 2. Ио вращается на расстоянии R = 422 000 км от центра Юпитера. Тогда центробежная сила F = mv ^ 2 / R, где v-скорость вращения v = 2Rп / T.

GM / R ^ 2 = 4п ^ 2R / T ^ 2, M = 4п ^ 2R ^ 3 / GT ^ 2 = 1.9 * 10 ^ 27

Тогда объем Юпитера можно найти из формулы V = 4 / 3пR1 ^ 3, где R1 радиус Юпитера. Имея его массу используем формулу для нахождения плотности ρ = M / V = ​​1323 кг / м ^ 3.

Источник

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) — Определение расстояний до небесных тел в Солнечной системе и их размеров

вкл. 27 Ноябрь 2016 .

Решебник по астрономии 11 класс на урок №10 (рабочая тетрадь) — Определение расстояний до небесных тел в Солнечной системе и их размеров

1. Закончите предложения.

Для измерения расстояний в пределах Солнечной системы используют астрономическую единицу (а. е.), которая равна среднему расстоянию от Земли до Солнца.

1 а.е. = 149 600 000 км

Расстояние до объекта по времени прохождения радиолокационного сигнала можно определить по формуле , где S = 1/2·ct, где S — расстояние до объекта, c — скорость света, t — время прохождения светила.

2. Дайте определения понятиям «параллакс» и «базис»; на рисунке 10.1 покажите эти величины.

Параллакс — угол p, под которым из недоступного места (точка C) будет виден отрезок AB, называемый базисом.

Базис — тщательно измеренное расстояние от точки A (наблюдатель) до какой-либо достигнутой для наблюдения точки B.

3. Как с помощью понятий параллакса и базиса определить расстояние до удаленного недоступного объекта С (рис. 10.1)?

По величине базиса и прилегающим к нему углам треугольника ABC найти расстояние AC. При измерениях на Земле этот метод называют триангуляцией.

4. Угол, под которым со светила S виден радиус Земли, перпендикулярный лучу зрения, называется горизонтальным параллаксом p (рис, 10.2). Определите расстояния: а) до Луны, если ее горизонтальный параллакс p = 57′; б) до Солнца, горизонтальный параллакс которого p = 8,8″.

5. Дополните рисунок 10.3 необходимыми построениями и выведите формулу, позволяющую определить радиус небесного светила (в радиусах Земли), если известны угловой радиус светила p и его горизонтальный параллакс p.

r = D · sin(ρ); R = D · sin(ρ)/sin(p) · R; r = ρ»/p» · R.

6. Решите следующие задачи (при расчетах считайте, что c = 3 · 10 5 км/с, R3 = 6370 км).

1. Радиолокатор зафиксировал отраженный сигнал от пролетающего вблизи Земли астероида через t — 0,667 с. На каком расстоянии от Земли находился в это время астероид?

2. Определите расстояние от Земли до Марса во время великого противостояния, когда его горизонтальный параллакс p = 23,2″.

3. При наблюдении прохождения Меркурия по диску Солнца определили, что его угловой радиус p = 5,5″, а горизонтальный параллакс p = 14,4″. Определите линейный радиус Меркурия.

1. Сигнал, посланный радиолокатором к Венере, возвратился назад через t — 4 мин 36 с. На каком расстоянии в это время находилась Венера в своем нижнем соединении?

Ответ: 41 млн км.

2. На какое расстояние к Земле подлетал астероид Икар, если его горизонтальный параллакс в это время был p = 18,0″?

Ответ: 1,22 млн км.

3. С помощью наблюдений определили, что угловой радиус Марса p = 9,0″, а горизонтальный параллакс p = 16,9″. Определите линейный радиус Марса.

Источник

Примеры решений задач по астрономии

Фокусное расстояние объектива телескопа составляет 900 мм, а фокусное расстояние используемого окуляра 25 мм. Определите увеличение телескопа.

Увеличение телескопа определяется из соотношения: , где F – фокусное расстояние объектива, f – фокусное расстояние окуляра. Таким образом, увеличение телескопа составит раз.

Переведите в часовую меру долготу Красноярска (l=92°52¢ в.д.).

Исходя из соотношений часовой меры угла и градусной:

24 ч =360°, 1 ч =15°, 1 мин =15¢, 1 с = 15², а 1°=4 мин, и учитывая, что 92°52¢ = 92,87°, получим:

Читайте также:  Великая сила любви кладовая солнца сочинение

1 ч · 92,87°/15°= 6,19 ч = 6 ч 11 мин. в.д.

Ответ: 6 ч 11 мин. в.д.

Каково склонение звезды, если она кульминирует на высоте 63° в Красноярске, географическая широта которого равна 56° с.ш.?

Используя соотношение, связывающие высоту светила в верхней кульминации, кульминирующего к югу от зенита, h, склонение светила δ и широту места наблюдения φ, h = δ + (90° – φ), получим:

δ = h + φ – 90° = 63° + 56° – 90° = 29°.

Когда в Гринвиче 10 ч 17 мин 14 с, в некотором пункте местное время равно 12 ч 43 мин 21 с. Какова долгота этого пункта?

Местное время – это среднее солнечное время, а местное время Гринвича – это всемирное время. Воспользовавшись соотношением, связывающим среднее солнечное время Tm, всемирное время T0 и долготу l, выраженную в часовой мере: Tm = T0 +l, получим:

l = TmT0 = 12 ч 43 мин 21 с. – 10 ч 17 мин 14 с = 2ч 26 мин 07 с.

Ответ: 2ч 26 мин 07 с.

Через какой промежуток времени повторяются моменты максимальной удаленности Венеры от Земли, если ее звездный период равен 224,70 сут?

Венера является нижней (внутренней) планетой. Конфигурация планеты, при которой происходит максимальная удаленность внутренней планеты от Земли, называется верхним соединением. А промежуток времени между последовательными одноименными конфигурациями планеты называется синодическим периодом S. Поэтому необходимо найти синодический период обращения Венеры. Воспользовавшись уравнением синодического движения для нижних (внутренних) планет , где T – сидерический, или звездный период обращения планеты, TÅ – сидерический период обращения Земли (звездный год), равный 365,26 средних солнечных суток, найдем:

=583,91 сут.

Ответ: 583,91 сут.

Звездный период обращения Юпитера вокруг Солнца составляет около 12 лет. Каково среднее расстояние Юпитера от Солнца?

Среднее расстояние планеты от Солнца равно большой полуоси эллиптической орбиты a. Из третьего закона Кеплера , сравнивая движение планеты с Землей, для которой приняв звездный период обращения T2 = 1 год, а большую полуось орбиты a2 = 1 а.е., получим простое выражение для определения среднего расстояния планеты от Солнца в астрономических единицах по известному звездному (сидерическому) периоду обращения, выраженному в годах. Подставив численные значения окончательно найдем:

≈ 5 а.е.

Ответ: около 5 а.е.

Определите расстояние от Земли до Марса в момент его противостояния, когда его горизонтальный параллакс равен 18².

Из формулы для определения геоцентрических расстояний , где ρ – горизонтальный параллакс светила, RÅ = 6378 км – средний радиус Земли, определим расстояние до Марса в момент противостояния:

» 73×10 6 км. Разделив это значение на величину астрономической единицы, получим 73×10 6 км / 149,6×10 6 км » 0,5 а.е.

Ответ: 73×10 6 км » 0,5 а.е.

Горизонтальный параллакс Солнца равен 8,8². На каком расстоянии от Земли (в а.е.) находился Юпитер, когда его горизонтальный параллакс был 1,5²?

Из формулы видно, что геоцентрическое расстояние одного светила D1 обратно пропорционально его горизонтальному параллаксу ρ1, т.е. . Аналогичную пропорциональность можно записать для другого светила у которого известны расстояние D2 и горизонтальный параллакс ρ2: . Разделив одно соотношение на другое, получим . Таким образом, зная из условия задачи, что горизонтальный параллакс Солнца равен 8,8², при этом оно находится на 1 а.е. от Земли, можно легко найти расстояние до Юпитера по известному горизонтальному параллаксу планеты в этот момент:

=5,9 а.е.

Определите линейный радиус Марса, если известно, что во время великого противостояния его угловой радиус составляет 12,5², а горизонтальный параллакс равен 23,4².

Линейный радиус светил R можно определить из соотношения , r – угловой радиус светила, r0 – его горизонтальный параллакс, RÅ – радиус Земли, равный 6378 км. Подставив значения из условия задачи, получим: = 3407 км.

Во сколько раз масса Плутона меньше массы Земли, если известно, что расстояние до его спутника Харона 19,64×10 3 км, а период обращения спутника равен 6,4 сут. Расстояние Луны от Земли составляет 3,84×10 5 км, а период обращения 27,3 сут.

Для определения масс небесных тел нужно воспользоваться третьим обобщенным законом Кеплера: . Так как массы планет M1 и М2 значительно меньше, чем массы их спутников m1 и m2, то массами спутников можно пренебречь. Тогда этот закон Кеплера можно переписать в следующем виде: , где а1 – большая полуось орбиты спутника первой планеты с массой M1, T1 – период обращения спутника первой планеты, а2 – большая полуось орбиты спутника второй планеты с массой M2, T2 – период обращения спутника второй планеты.

Подставив соответствующие значения из условия задачи, получим:

= 0,0024.

Ответ: в 0,0024 раза.

Космический зонд «Гюйгенс» 14 января 2005 года совершил посадку на спутник Сатурна Титан. Во время снижения он передал на Землю фотографию поверхности этого небесного тела, на которой видны образования похожие на реки и моря. Оцените среднюю температуру на поверхности Титана. Как Вы думаете, из какой жидкости могут состоять реки и моря на Титане?

Указание: Расстояние от Солнца до Сатурна составляет 9,54 а.е. Отражательную способность Земли и Титана считать одинаковой, а среднюю температуру на поверхности Земли равной 16°С.

Энергии, получаемые Землей и Титаном обратно пропорциональны квадратам их расстояний от Солнца r. Часть энергии отражается, часть поглощается и идет на нагрев поверхности. Считая, что отражательная способность этих небесных тел одинакова, то процент энергии идущий на нагрев этих тел будет одинаков. Оценим температуру поверхности Титана в приближении абсолютно черного тела, т.е. когда количество поглощаемой энергии равно количеству излучаемой энергии нагретым телом. Согласно закону Стефана-Больцмана энергия, излучаемая единицей поверхности в единицу времени пропорциональна четвертой степени абсолютной температуры тела . Таким образом, для энергии, поглощаемой Землей можем записать , где rз – расстояние от Солнца до Земли, Tз –средняя температура на поверхности Земли, а Титаном – , где rc – расстояние от Солнца до Сатурна с его спутником Титаном, TT –средняя температура на поверхности Титана. Взяв отношение, получим: , отсюда 94°K = (94°K – 273°K) = –179°С. При такой низкой температуре моря на Титане могут состоять из жидкого газа, например, метана или этана.

Читайте также:  Осеннее солнце алиса табы

Ответ: Из жидкого газа, например, метана или этана, так как температура на Титане –179°С.

Какую видимую звездную величину имеет Солнце, наблюдаемое с ближайшей звезды? Расстояние до нее составляет около 270 000 а.е.

Воспользуемся формулой Погсона: , где I1 и I2 – яркости источников, m1 и m2 – их звездные величины соответственно. Так как яркость обратно пропорциональна квадрату расстояния до источника , то можно записать . Логарифмируя это выражение, получим . Известно, что видимая звездная величина Солнца с Земли (с расстояния r1 = 1 а.е.) m1 = –26,8. Требуется найти видимую звездную величину Солнца m2 с расстояния r2 = 270 000 а.е. Подставив эти значения в выражение, получим:

, отсюда ≈ 0,4 m .

Годичный параллакс Сириуса (a Большого Пса) составляет 0,377². Чему равно расстояние до этой звезды в парсеках и световых годах?

Расстояния до звезд в парсеках определяется из соотношения , где π – годичный параллакс звезды. Поэтому = 2,65 пк. Так 1 пк = 3,26 св. г., то расстояние до Сириуса в световых годах будет составлять 2,65 пк · 3,26 св. г. = 8,64 св. г.

Ответ: 2,63 пк или 8,64 св. г.

Видимая звездная величина звезды Сириуса равна –1,46 m , а расстояние составляет 2,65 пк. Определите абсолютную звездную величину этой звезды.

Абсолютная звездная величина M связана с видимой звездной величиной m и расстоянием до звезды r в парсеках следующим соотношением: . Эту формулу можно вывести из формулы Погсона , зная, что абсолютная звездная величина – это звездная величина, которую имела бы звезда, если бы она находилась на стандартном расстоянии r0 = 10 пк. Для этого перепишем формулу Погсона в виде , где I – яркость звезды на Земле c расстояния r, а I0 – яркость с расстояния r0 = 10 пк. Так как видимая яркость звезды изменятся обратно пропорционально квадрату расстояния до нее, т.е. , то . Логарифмируя, получаем: или или .

Подставив в это соотношение значения из условия задачи, получим:

= 1,42 m .

Во сколько раз звезда Арктур (a Волопаса) больше Солнца, если светимость Арктура в 100 раз больше солнечной, а температура 4500° К?

Светимость звезды L – полную энергию излучаемую звездой в единицу времени можно определить как , где S – площадь поверхности звезды, ε – энергия, излучаемая звездой с единицы площади поверхности, которая определяется законом Стефана-Больцмана , где σ – постоянная Стефана-Больцмана, T – абсолютная температура поверхности звезды. Таким образом, можно записать: , где R – радиус звезды. Для Солнца можно записать аналогичное выражение: , где Lс –светимость Солнца, Rс – радиус Солнца, Tс – температура поверхности Солнца. Разделив одно выражение на другое, получим:

Или можно записать это соотношение таким образом: . Приняв для Солнца Rс=1 и Lс=1, получим . Подставив значения из условия задачи, найдем радиус звезды в радиусах Солнца (или во сколько раз звезда больше или меньше Солнца):

≈ 18 раз.

В спиральной галактике в созвездии Треугольника наблюдаются цефеиды с периодом 13 дней, а их видимая звездная величина 19,6 m . Определите расстояние до галактики в световых годах.

Указание: Абсолютная звездная величина цефеиды с указанным периодом равна M = – 4,6 m .

Из соотношения , связывающего абсолютную звездную величину M с видимой звездной величиной m и расстоянием до звезды r, выраженному в парсеках, получим: = . Отсюда r ≈ 690 000 пк = 690 000 пк · 3,26 св. г. ≈2 250 000 св. л.

Ответ: примерно 2 250 000 св. л.

Квазар имеет красное смещение z = 0,1. Определите расстояние до квазара.

Указание: Считать, что постоянная Хаббла H = 70 км/(с∙Мпк).

Запишем закон Хаббла: , где v – лучевая скорость удаления галактики (квазара), r – расстояние до нее, H – постоянная Хаббла. С другой стороны, согласно эффекту Доплера, лучевая скорость движущегося объекта равна , с – скорость света, λ0 – длина волны линии в спектре для неподвижного источника, λ – длина волны линии в спектре для движущегося источника, – красное смещение. А так как красное смещение в спектрах галактик интерпретируется как доплеровское смещение, связанное с их удалением, закон Хаббла часто записывают в виде: . Выразив расстояние до квазара r и подставив значения из условия задачи, получим:

≈ 430 Мпк = 430 Мпк · 3,26 св. г. ≈ 1,4 млрд. св.л.

Источник

Adblock
detector