Меню

Во вселенной все взаимодействует со всеми

Теория взаимодействия частиц во Вселенной

В июле 2012 г. участники семинара ЦЕРН (Европейского центра ядерных исследований) рассказали о том, что им наконец удалось обнаружить частицу, похожую на элементарный бозон Хиггса, предсказанный в конце ХХ в. американским ученым Стивеном Вайнбергом. Это событие стало новой вехой в развитии физики, ведь найденный бозон уже давно получил титул Частицы Бога и чуть ли не главного элемента всех процессов и явлений во Вселенной.

Еще Альберт Эйнштейн делал попытки разработать «единую теорию всего», объединив четыре взаимодействия, на которых зиждутся все физические процессы: гравитационное (сила тяжести), электромагнитное, сильное (ответственное за реакции в ядрах атомов) и слабое (влияющее на реакции между элементарными частицами, в том числе нейтрино). Увы, несмотря на все старания, ученый так ни к чему и не пришел.

Но зачем вообще нужно было объединять все эти взаимодействия? Дело в том, что с ростом энергии, выделяющейся при столкновениях и рассеяниях частиц, способы их контактирования постепенно становятся все более схожими. Очевидно, в первые моменты после Большого взрыва, который дал начало нашей Вселенной, существовало лишь одно взаимодействие, но материя охлаждалась, энергия частиц таяла, и взаимодействовать они хотели уже по-разному. Так со временем некогда целостное взаимодействие раскололось на четыре отдельные силы. Ученые долго бились над тем, чтобы представить этот процесс в виде физической и математической моделей, однако им не хватало знаний.

Решение нашел Стивен Вайнберг (р. 1933), написавший знаменитую книгу «Первые три минуты», где понятным языком было изложено то, что происходило в первые 3 мин после Большого взрыва. С 1960-х Вайнберг разрабатывал математическую систему, основанную на симметрии — идее зеркального отражения частиц и их взаимодействий. Если принять эту идею, становится понятным, почему при рассеянии одной частицы на другой наблюдаются те или иные формы взаимодействия между ними.

Само понятие симметрии появилось еще в 1930-х, но ученые никак не могли догадаться, как оно может связать слабые и электромагнитные силы. Знать бы, что общего может быть у этих сил, и можно аналитическим путем прийти к единой теории, поясняющей причины и процесс базовых взаимодействий во Вселенной. А общей у них могла быть лишь некая частица, которая исполняла бы функции переносчика, — подобно тому, как световой квант, фотон, переносит электромагнитные взаимодействия между электронами и позитронами, а глюон переносит заряд между кварками. Сложность состояла в том, что такая частица по идее должна была иметь огромную массу, и технические возможности тогдашних ускорителей не позволяли ее обнаружить.

Только в 1967 г. Вайнберга осенило, что искать загадочную частицу нужно в другом направлении. В попытках соединить тяжелый W-бозон — переносчик слабых взаимодействий — с невесомым фотоном, переносящим электромагнитное взаимодействие, ученый пришел к мысли, что упускает какой-то механизм, неведомый ранее. Проведя еще ряд теоретических исследований, Вайнберг нашел этот механизм и назвал его «бозон Хиггса».

В том же 1967 г. ученый издал статью «Модель лептонов», где четко выстроил в единую теорию принципы взаимодействия частиц и квантовую механику, а главное — связал электромагнетизм со «слабой силой», вызывающей определенные ядерные распады. Подчеркнув, что все это — проявления одной и той же силы, Вайнберг ввел механизм Хиггса, который сообщает частицам массу. За это открытие в 1979 г. ему вручили Нобелевскую премию.

С момента выхода статьи Вайнберга ЦЕРН задался целью доказать его умозаключения, для чего принялся конструировать все более мощные ускорители. В 1973 г. установка Gargamelle представила первое подтверждение существования электрослабого тока. В 1982 г. суперпротонный синхротрон впервые позволил обнаружить W-бозон. Наконец, в декабре 2011 г., проводя эксперименты в ЦЕРН на Большом адронном коллайдере (LHC — Large Hadron Collider), ученые смогли четко рассмотреть искомую частицу H.

Дальнейшие наблюдения показали, что бозон Хиггса не заряжен и нестабилен, при этом в зависимости от ситуации распадается по-разному. Благодаря LHC ученые увидели, что час-тица может распадаться на два фотона, а также на пары электрон/позитрон, мюон/антимюон. Как для микромира, бозон Хиггса живет относительно долго, а рождается либо сам от взаимодействия двух глюонов, либо вместе с парой легких высокоэнергетичных кварков, с одним W- или Z-бозоном или с парой t-кварка и антикварка. Изучая разные механизмы рождения этих частиц на LHC, можно многое узнать о взаимодействии бозона Хиггса с W-, Z-бозонами и t-кварком.

Читайте также:  Как далеко можно увидеть вселенную

Еще одна важная характеристика Н-бозона — способность взаимодействовать с самим собой. То есть виртуальная частица Н (временный, маложивущий бозон, у которого нарушена связь между импульсом и энергией) может распасться на два обычных бозона. Впрочем, свойства этого процесса ученым еще предстоит исследовать.

По словам сотрудников ЦЕРН, «прошло полвека после публикации статьи Стивена Вайнберга, но до сих пор не была сформулирована теория, которая так же ясно объясняла бы фундаментальную физику. Именно Вайнберг собрал все части головоломки и соединил их в одну, очень простую идею».

Источник

Краткое описание Вселенной

Краткое руководство по физике и тайнам нашей Вселенной для тех, у кого мало времени.

Понимание физики хорошо по многим причинам. Физика не только информирует нас о нашем доме в Солнечной системе и о Великой Вселенной, но и является основой для того, что все мы используем: технологии. Это то, что стимулировало как промышленную, так и информационную революции, создав современное общество, каким мы его знаем. Технологии позволяют получить доступ к интернету, смотреть ваши любимые шоу, и иметь важную информацию о вашем здоровье, когда вы находитесь в больнице. В будущем технологии позволят нам сделать так много, что большая часть того, что сегодня звучит как научная фантастика, — перемещение объектов силой мысли, не касаясь их, невидимость, вечная молодость, — станет реальностью. Наши потомки в будущем покажутся богами по сравнению с тем, чего мы сами можем достичь сегодня. И всё это, из-за экспоненциального роста технологий, который может произойти в течение ближайших 100 лет.

Здесь краткий фундамент для физики и что она может рассказать нам о нашей Вселенной.

Краткая история физики

Во Вселенной существует четыре основные силы взаимодействия, называемых фундаментальными. В порядке от самого сильного к самому слабому фундаментальному взаимодействию они располагаются так: сильное ядерное, электромагнитное, слабое ядерное и сила тяжести (гравитация).

Гравитация

В возрасте 23 лет Исаак Ньютон уже свободно владел базовыми методами дифференциального и интегрального исчислений. Он также изобрел телескоп-рефлектор, который использовал для наблюдения за кометой. И он дал нам понятие гравитации. Это был первый шаг к разгадке тайн нашей необъятной и загадочной Вселенной.

Напомним, что законы Ньютона заключаются в следующем:

  1. Движущийся объект будет оставаться в движении, а объект в состоянии покоя будет оставаться в состоянии покоя, до тех по, пока на них не действует внешняя сила.

2. Сила = масса * ускорение.

3. Для каждого действия существует равное и противоположное противодействие.

Эти первые законы физики породили промышленную революцию и, таким образом, наступила современная эпоха. Тем не менее, было несколько других важных игроков.

Электромагнитное взаимодействие

Электрическая революция произошла в значительной степени благодаря человеку, который никогда не имел даже формального образования. Майкл Фарадей продемонстрировал свойства электричества во время своих публичных лекций. Он входил в стальные клетки и электрифицировал их, показывая, что сталь создает барьер для электричества, и что, пока вы сами не коснетесь барьера, вы будете в безопасности от электрических токов. Его закон заключается в том, что напряжение электричества может быть создано из магнитной среды. Движущийся провод в магнитном поле создает электрический ток, толкая электроны.

Читайте также:  Лига справедливости темная вселенная война апокалипсис

Если движущийся магнит создает электрическое поле, то верно и обратное. Движущееся электрическое поле приведет к магнитному полю. Они одно и то же. Единая объединяющая сила.

Джеймс Максвелл во время Гражданской войны в США рассчитал скорость волны, которая колебалась между магнитным и электрическим полями. Это волна, в которой магнитные поля создавали электрические, которые в свою очередь создавали магнитные поля, и так бесконечно. Скорость этой волны оказалась равна скорости света. На самом деле, это и был свет сам по себе!

Сильные и слабые ядерные взаимодействия

Оба этих взаимодействия (силы) работают на атомарном уровне, хотя и по совершенно противоположным причинам. Сильные взаимодействия являются одними из самых сильных во всей Вселенной и именно они связывают составляющие частицы ядер — протоны и нейтроны. Слабое взаимодействие имеет дело с радиоактивным распадом субатомных частиц. Это то, посредством чего произвоится ядерный синтез, благодаря которому «горит» Солнце и другие звезды. Когда элемент распадается из-за воздействия слабого взаимодействия, он превращается в совершенно другой элемент. Атомы углерода с 6-ю протонами и 8-ю нейтронами, распадаются на атомы азота, с 7-ю протонами и 7-ю нейтронами. В этом случае слабое взаимодействие воздействовало на нейтрон и превращало его в протон.

Самая известная Формула Эйнштейна

Вес не постоянен. Чем быстрее вы двигаетесь, тем тяжелее вы становитесь. Масса — это энергия. Это идея самой известной формулы Эйнштейна: E = mc², или энергия = масса*(скорость света в квадрате).

Эта формула, наряду с нашими знаниями о слабом ядерном взаимодействии, помогла нам понять, что происходит внутри Солнца.

Нам посчастливилось, что наше солнце находится в такой момент своей жизни, когда оно невероятно стабильно ( желтый карлик), последовательно превращая водород в гелий. Однако через миллиард лет этого уже не будет. Солнце в этот момент станет достаточно горячим, чтобы вскипятить наши океаны, и через несколько миллиардов лет после этого оно превратится в красного гиганта, настолько огромного, что поглотит нас полностью. Существует шанс, хотя и небольшой, что Земля избежит солнечной жары и выживет за пределами красного карлика Солнца. Но если она выживет, то в конечном итоге выйдет на орбиту около пояса астероидов, который будет вращаться вокруг белого карлика Солнца.

Излишне говорить, что шансы, что человечество просуществует достаточно долго, чтобы увидеть прекрасную смерть нашей звезды, невероятно малы.

Теория струн

Это теория, которая пытается соединить теорию относительности Эйнштейна с квантовой механикой. То есть, она пытается быть объяснением от самых маленьких частиц в нашей Вселенной вплоть до больших тел, планет и звезд. Она работает, предполагая, что частицы являются струнами и что вибрация этих струн по-другому преобразует их в другую частицу. Таким образом, Теория струн объединила бы все четыре силы, о которых мы говорили выше.

В то время как уравнения Эйнштейна не работают в центре черной дыры и во время до Большого взрыва, Теория струн предполагает, что мы не только одна Вселенная, но одна Вселенная, которая является частью Мультивселенной. И если это правда, то в будущем мы сможем создать червоточины для других вселенных. Даже создание машин времени станет возможно, хотя это и потребуют огромного количества энергии.

Тайна темной энергии и темной материи

В то время как книги по физике сегодня расскажут вам, что большая часть Вселенной состоит из атомов, это неправда. Большая часть Вселенной состоит из Темной энергии и Темной материи. Темная энергия составляет 68% Вселенной, а Темная материя — 27%, а так называемая «нормальная материя» — атомы и всё, что мы видим вокруг нас — менее 5%.

Мы знаем, что темная энергия и темная материя существуют, потому что мы наблюдаем, как они влияют на нашу Вселенную. Темная материя, например, не взаимодействует ни с какой другой основной силой во Вселенной, кроме гравитации. Она имеет в шесть раз большую силу гравитации, чем обычная материя, и без нее галактики не существовали бы, поскольку гравитации обычной материи недостаточно, чтобы держать звезды вместе в галактических кластерах. Мы знаем, что темная материя существует, потому что свет будет изгибаться вокруг неё.

Читайте также:  Темная вселенная война апокалипсиса

Темная энергия заставляет Вселенную расширяться гораздо быстрее, чем мы ожидали. На самом деле считалось, что гравитация в конечном итоге замедлит и остановит расширение Вселенной. То, что мы знаем о темной энергии, — это только то, что она существует там, где есть пустое пространство, и что она продолжает становиться сильнее с течением времени.

Нобелевская премия ждет каждого, кто сможет рассказать нам, что такое темная материя и темная энергия, или даже почему мы вообще существуем. Нет, действительно! Ничего из этого не должно существовать. Мы здесь только потому, что существует дисбаланс материи и антиматерии. Что вызвало этот дисбаланс? Никто не знает.

Источник

Четыре силы Вселенной

Вселенная приводится в действие четырьмя фундаментальными силами. Эти четыре силы совершенно непохожи друг на друга. У них разная физика, разные качества, они по-разному взаимодействуют.

Первая сила не даёт нам упасть с Земли в открытый космос

Это гравитационное взаимодействие. Несмотря на то, что человеку сложно преодолеть эту силу, она самая слабая из всех четырёх. Её может преодолеть даже электромагнитная сила. Например, при помощи статического электричества, расчёска может поднять клочки бумаги.

Без гравитации не было бы галактик, звёзд, планет и наших любимых чёрных дыр. Если было бы возможно отключить гравитацию во Вселенной, с Земли улетели бы вода и атмосфера. И мы бы улетели со скоростью сотен километров в секунду. Да и сама Земля развалилась бы на части, которые бы улетели в разные стороны. Впрочем, это произошло бы вообще со всей материей.

Сила гравитации зависит от массы и расстояния объектов друг от друга. Чем больше масса планеты или звезды, тем больше гравитация, тем больше весит тело. Хотите весить в шесть раз меньше? Летите на Луну.

Из-за второй силы у нас есть интернет, электричество, компьютеры

Это электромагнитная сила. Эта сила возникает между частицами, обладающими электрическим зарядом. Она притягивает положительно заряженные и отрицательно заряженные частицы. Из-за неё отрицательные электроны не улетают от своих положительно заряженных протонов.

Свет – это электромагнитное явление. Сила трения, упругости, сила поверхностного натяжения и многие другие – это всё электромагнитные силы. Электромагнитная сила лежит в основе химических превращений, а также в основе переходов из одного агрегатного состояния в другое.

Из-за третьей силы извергаются вулканы

Это слабое ядерное взаимодействие. Слабой эта сила названа потому, что она слабее сильного и электромагнитного взаимодействий. Но она гораздо сильнее гравитационной силы.

Позволяет ядру атомов распадаться. Слабое взаимодействие обеспечивает один из видов радиоактивности – бета-распад. В результате бета-распада нейтрон превращается в протон, электрон или электронное антинейтрино.

Радиоактивные ядерные приборы в больницах работают из-за слабого ядерного взаимодействия. Из-за него разогревается ядро Земли, что приводит к извержениям вулканов.

Из-за слабого взаимодействия в звёздах протекают термоядерные реакции: происходит выгорание водорода, четыре протона превращаются в два протона и два нейтрона, образуя таким образом ядро гелия.

Сильное ядерное взаимодействие скрепляет ядро атома

Положительно и отрицательно заряженные частицы притягиваются из-за электромагнитной силы, а одноимённо заряженные частицы наоборот из-за него отталкиваются. Но что делать, если ядро состоит из положительно заряженных частиц, как их собрать вместе?

На помощь приходит самая сильная сила — сильное ядерное взаимодействие. Эта сила притягивает положительно заряженные протоны друг другу, формируя ядра атомов.

Кроме того, сильное ядерное взаимодействие не позволяет протонам и нейтронам, составляющим ядра атомов, развалиться на составляющие.

Источник

Adblock
detector