Меню

Волновая функция вселенной хокинг

Волновая функция Вселенной. Хокинг — один из основоположников новой научной дисциплины, называемой квантовой космологией

Хокинг — один из основоположников новой научной дисциплины, называемой квантовой космологией. Поначалу терминология казалась противоречивой. Слово квант относится к бесконечно малому миру кварков и нейтрино, а космология ассоциируется с почти бесконечным космическим пространством. Однако Хокинг и его последователи убеждены, что на основные вопросы космологии можно ответить только с помощью квантовой теории. Хокинг подводит квантовую космологию к окончательному квантовому заключению, допуская существование бесконечного множества параллельных вселенных.

Как мы помним, отправная точка квантовой теории — волновая функция, описывающая все возможные состояния частицы. К примеру, представим себе огромную грозовую тучу неправильной формы, заволакивающую небо. Чем темнее туча, тем выше концентрация водяного пара и пыли в этой точке. Таким образом, достаточно просто взглянуть на тучу, чтобы оценить вероятность обнаружения высокой концентрации воды и пыли в определенных местах на небе.

Эту тучу можно сравнить с волновой функцией единственного электрона. Подобно грозовой туче, она заполняет все пространство. Чем больше ее величина в какой-либо точке, тем выше вероятность обнаружить там электрон. Аналогичным образом волновая функция может ассоциироваться с крупными объектами, например людьми. Сидя в кресле у себя в Принстоне, я знаю, что обладаю шрёдингеровской вероятностной волновой функцией. Если бы мне как-нибудь Удалось увидеть собственную волновую функцию, она напомнила бы мне облако в форме моего тела. Однако часть этого облака распространилась бы по всему пространству вплоть До Марса и даже за пределы Солнечной системы, хотя была бы в этом случае исчезающе малой. Это означает, что вероятность моего пребывания в кресле, а не на планете Марс, довольно велика. Несмотря на то что отчасти моя волновая функция распространилась за пределы галактики Млечный Путь, вероятность того, что я сижу в другой галактике, бесконечно мала.

Новая идея Хокинга заключалась в том, чтобы воспринимать вселенную в целом так, словно она представляет собой квантовую частицу. Повторив несколько простых шагов, мы придем к выводу, который откроет нам глаза.

Начнем с волновой функции, описывающей совокупность всех возможных вселенных. Это означает, что отправной точкой теории Хокинга должен быть бесконечный ряд параллельных вселенных — волновая функция Вселенной. Довольно простой анализ Хокинга, в котором слово частица заменено словом Вселенная, привел к перевороту в наших представлениях о космологии.

Согласно этой картине волновая функция Вселенной распространяется во всех возможных вселенных. Подразумевается, что эта волновая функция довольно велика вблизи нашей Вселенной, следовательно, есть немалая вероятность, что наша Вселенная и есть та, которая нам нужна, чего и следовало ожидать. Но волновая функция распространяется и на все остальные вселенные, в том числе безжизненные и несовместимые с привычными нам законами физики. Поскольку волновая функция предполагается для этих прочих вселенных исчезающе малой, мы не рассчитываем, что наша Вселенная сделает квантовый скачок к ним в ближайшем будущем.

Цель, стоящая перед квантовыми космологами, — подтвердить эту догадку математически, показать, что волновая функция Вселенной велика для нашей нынешней Вселенной и исчезающе мала для остальных. Это доказывало бы, что привычная для нас Вселенная в некотором смысле уникальна и вместе с тем стабильна. (В настоящее время специалисты по квантовой космологии не в силах решить эту важную задачу.)

Если отнестись к доводам Хокинга со всей серьезностью, это означает, что начать анализ следует с бесконечного количества всех возможных вселенных, сосуществующих друг с другом. Или, попросту говоря, определение Вселенной теперь не сводится к выражению «все, что существует». Теперь это означает «все, что может существовать». Например, на рис. 12.1 мы видим, как волновая функция Вселенной может распространиться на несколько возможных вселенных, причем наша окажется наиболее вероятной, но определенно не единственной. Квантовая космология Хокинга также подразумевает, что волновая функция Вселенной позволяет этим вселенным сталкиваться. «Червоточины» могут возникать и соединять эти вселенные. Однако это не те «червоточины», с которыми мы имели дело в предыдущих главах, не те, которые соединяют разные области трехмерного пространства: в данном случае «червоточины» соединяют друг с другом разные вселенные.

Читайте также:  Стационарные модели вселенной предполагают что

Рис. 12.1. Волновая функция вселенной Хокинга с наибольшей вероятностью сосредоточена вокруг нашей Вселенной. Мы живем в нашей Вселенной, поскольку это наиболее подходящий и наиболее вероятный вариант. Однако есть маленькая, но не исчезающая вероятность, что волновая функция предпочитает соседние, параллельные вселенные. Таким образом, переходы между вселенными возможны (хотя и очень маловероятны).

Представим себе, к примеру, множество мыльных пузырей, зависших в воздухе. При нормальных условиях каждый такой пузырь представляет собой вселенную, он периодически сталкивается с другими пузырями и сливается в один большой или делится на два пузыря поменьше. Отличие в том, что теперь каждый мыльный пузырь — целая десятимерная вселенная. Так как пространство и время могут существовать только на каждом пузыре, между ними нет ни пространства, ни времени. У каждой вселенной свое «время», ограниченное ею одной. Незачем добавлять, что время во всех этих вселенных идет с одинаковой скоростью. (Однако следует подчеркнуть, что путешествия между вселенными недоступны для нас из-за примитивного уровня развития нашей техники и технологии. Более того, необходимо отметить, что большие квантовые переходы в таких масштабах крайне редки, их частота сопоставима с продолжительностью существования нашей Вселенной.) Большинство таких вселенных мертвы, полностью лишены признаков жизни. В этих вселенных действуют другие законы физики, следовательно, физические условия, благодаря которым жизнь стала возможной, не сложились. Может быть, среди миллиардов параллельных миров только один, наш, обладает тем набором физических законов, который нужен для появления жизни (рис. 12.2).

Рис. 12.2. Наша Вселенная может оказаться одним из бесчисленного множества параллельных миров, каждый из которых связан с остальными бесконечным множеством «червоточин». Путешествия по этим «червоточинам» возможны, но чрезвычайно маловероятны.

Теория «дочерней вселенной» Хокинга хотя и не предлагает практические методы транспортировки, тем не менее поднимает философские и, возможно, даже религиозные вопросы. Она уже породила два затяжных спора в кругах космологов.

Источник

Волновая функция вселенной хокинг

Завораживающе… Читатель ошеломлен, вдохновлен и смотрит на мир в буквальном смысле новым, революционным взглядом.

Научная революция почти по определению противоречит здравому смыслу.

Если бы наши продиктованные здравым смыслом представления о Вселенной были верны, наука разгадала бы ее секреты еще тысячи лет назад. Цель науки — очистить предмет от внешних проявлений, обнажая скрывающуюся под ними сущность. Собственно, если бы видимость и сущность совпадали, потребности в науке не возникло бы.

Вероятно, наиболее укоренившееся представление о нашем мире, проистекающее из здравого смысла, — то, что наш мир трехмерный. Без лишних объяснений понятно, что длины, ширины и высоты достаточно для описания всех объектов в видимой нам Вселенной. Эксперименты с младенцами и животными подтвердили, что ощущение трехмерности нашего мира присуще нам с самого рождения. А когда мы прибавляем к трем измерениям еще одно — время, то четырех измерений хватает для описания всего происходящего во Вселенной. Где бы ни применялись наши инструменты — и в глубине атома, и на самых дальних границах скопления галактик, — мы нашли только свидетельства этих четырех измерений. Во всеуслышание утверждать иное, заявлять о возможном существовании других измерений или сосуществовании нашей Вселенной рядом с другими — значит навлекать на себя насмешки. Тем не менее этому глубоко укоренившемуся предрассудку в отношении нашего мира, впервые взятому на вооружение древнегреческими философами два тысячелетия назад, предстоит пасть жертвой научного прогресса.

Читайте также:  Покажите вселенной чего вы

Эта книга посвящена революции в науке, которую произвела теория гиперпространства[1], утверждающая, что существуют и другие измерения помимо четырех общеизвестных измерений пространства и времени. Физики всего мира, в том числе несколько нобелевских лауреатов, все охотнее признают, что в действительности Вселенная может существовать в пространстве с более высоким количеством измерений. Если эта теория верна, она совершит концептуальный и философский переворот в наших представлениях о Вселенной. В научных кругах теория гиперпространства известна под названием теорий Калуцы-Клейна и супергравитации. В усовершенствованном виде она представлена теорией суперструн, которая даже предполагает точное число измерений — десять. Три обычных пространственных (длина, ширина, высота) и одно временное дополнены еще шестью пространственными.

Предупреждаем: теория гиперпространства еще не подтверждена экспериментально, и, в сущности, весьма затруднительно подтвердить ее в лабораторных условиях. Однако она уже распространилась, покорила крупные исследовательские лаборатории мира и бесповоротно изменила научный ландшафт современной физики, породив ошеломляющее множество научно-исследовательских работ (по одним подсчетам — свыше 5000). Однако для неспециалистов почти ничего не написано, им не рассказали об удивительных свойствах многомерного пространства. Следовательно, широкие массы имеют лишь смутное представление об этой революции, если вообще имеют. Более того, бойкие упоминания об иных измерениях и параллельных вселенных в популярной культуре зачастую вводят в заблуждение. И это прискорбно, так как значение этой теории заключается в том, что она способна объединять все известные физические феномены в поразительно простую конструкцию. Благодаря данной книге впервые становятся доступными авторитетные с научной точки зрения и вместе с тем понятные сведения об увлекательных современных исследованиях гиперпространства.

Стремясь объяснить, почему теория гиперпространства вызвала такой ажиотаж в мире теоретической физики, я подробно рассмотрел четыре фундаментальные темы, которые красной нитью проходят через всю книгу. Этим темам соответствуют четыре части.

В части I я излагаю ранний этап развития теории гиперпространства, подчеркивая, что законы природы становятся более простыми и красивыми, если их записывать для большего числа измерений.

Для того чтобы понять, каким образом многомерность может упростить физические задачи, рассмотрим следующий пример: для древних египтян все, что связано с погодой, было полнейшей загадкой. Что вызывает смену времен года? Почему становится теплее, если ехать на юг? Почему ветры обычно дуют в одном направлении? Невозможно было объяснить погоду, пользуясь ограниченными знаниями древних египтян, которые считали Землю двумерной плоскостью. А теперь представим, что египтян в ракете запустили в космос, откуда Земля видна как объект, движущийся по орбите вокруг Солнца. И ответы на все перечисленные ранее вопросы станут очевидными.

Тому, кто находится в космосе, ясно, что земная ось отклонена от вертикали примерно на 23° (при этом вертикаль перпендикулярна плоскости орбиты вращения Земли вокруг Солнца). Ввиду этого наклона северное полушарие получает гораздо меньше солнечного света при прохождении по одной части орбиты и больше — при прохождении по другой части. Поэтому на Земле есть зима и лето. И поскольку экваториальным областям достается больше солнечного света, чем областям вблизи Северного или Южного полюса, теплее становится по мере того, как мы приближаемся к экватору. И аналогично: поскольку Земля вращается против часовой стрелки (с точки зрения того, кто находится на Северном полюсе), северный, полярный воздух отклоняется в сторону, двигаясь на юг, к экватору. Таким образом, перемещение горячих и холодных масс воздуха, приведенных в движение вращением Земли, помогает объяснить, почему ветры обычно дуют в одном направлении — в зависимости от того, где именно на Земле мы находимся.

Читайте также:  Что находится вне нашей вселенной

Словом, довольно смутные законы погоды легко понять, если взглянуть на Землю из космоса. Следовательно, для решения проблемы требуется выйти в космос — в третье измерение. Факты, непостижимые в «плоском мире», вдруг становятся очевидными, если рассматривать Землю трехмерной.

Законы тяготения и света тоже могут выглядеть так, словно между ними нет ничего общего. Они согласуются с разными физическими допущениями и математически рассчитываются по-разному. Попытки «срастить» эти две силы неизменно оказываются провальными. Но если мы добавим еще одно измерение — пятое — к предыдущим четырем (пространству и времени), тогда формулы, определяющие свет и тяготение, сойдутся, как два фрагмента головоломки. По сути, свет можно объяснить как вибрации в пятом измерении. При этом мы убедимся, что законы света и тяготения упростятся в пяти измерениях.

Поэтому многие физики в настоящее время убеждены, что традиционная четырехмерная теория «слишком тесна» для адекватного описания сил, характеризующих нашу Вселенную. Придерживаясь четырехмерной теории, физики вынуждены неудобным и неестественным образом «спрессовывать» силы природы. Более того, эта гибридная теория некорректна. Но, если оперировать количеством измерений, превышающих четыре, нам хватит «места», чтобы найти красивое, самодостаточное объяснение фундаментальным силам.

В части II мы развиваем эту простую мысль, подчеркивая, что теория гиперпространства, возможно, в состоянии объединить все известные законы природы в единой теории. Таким образом, теория гиперпространства способна увенчать достижения двух тысячелетий научных исследований, объединив все известные физические силы. Возможно, она подарит нам святой Грааль физики — «теорию всего», столько десятилетий ускользавшую от Эйнштейна.

На протяжении последних пятидесяти лет ученых занимал вопрос о том, почему фундаментальные силы, скрепляющие космос, — тяготение, электромагнетизм, сильное и слабое ядерное взаимодействия — так разительно отличаются друг от друга. Попытки величайших умов XX в. представить общую картину всех известных взаимодействий провалились. А теория гиперпространства дает возможность дать логичное объяснение как четырем силам природы, так и, казалось бы, беспорядочному набору субатомных частиц. В теории гиперпространства материю также можно рассматривать как вибрации, распространяющиеся в пространстве и времени. Отсюда следует захватывающее предположение: все, что мы видим вокруг, — от деревьев и гор до самих звезд — не что иное, как вибрации в гиперпространстве. Если это верно, значит, у нас появляется возможность элегантно и просто описать Вселенную средствами геометрии.

Это настолько новый предмет (Ha момент первого издания книги — 1994 г. — Прим. пер.), что для него еще не существует общепринятого термина, которым пользовались бы физики-теоретики, ссылаясь на теории высших измерений. Строго говоря, когда физики ведут речь об этой теории, они ссылаются на конкретную теорию — Калуцы-Клейна, супергравитации, суперструн, хотя термин «гиперпространство» обычно применяется, когда имеются в виду высшие измерения, а «гипер» — корректная научная приставка для геометрических объектов, относящихся к миру высших измерений. В соответствии с распространенной практикой я пользуюсь термином «гиперпространство», говоря о высших измерениях. (Здесь и далее в сносках курсивом даны примечания, идущие в конце бумажной книги. — Прим. верст.)

Источник

Adblock
detector