Возраст Вселенной
Для того, чтобы пройти этот путь, Вселенной понадобилось немало времени. Смотреть в полном размере.
Возраст Вселенной по современным оценкам составляет 13,7 ± 0,2 млрд лет. Этим понятием называют временной отрезок от момента начала расширения Вселенной и до сегодняшнего дня. Определить данное значение можно большим множеством способов, которые мы рассмотрим далее.
Первые предположения
Представляя Землю центром мира, ученые древности заранее ставили себя в тупик
Вопросом о возрасте мироздания философы задавались еще в античность. Греки и вавилоняне утверждали о вечности мира, индуисты же в 150-м году до н.э. определили точную цифру — 1 млрд. 972 млн. 949 тыс. 091 год, и среди своих современников оказались ближе всех к истине. В XVII веке английский теолог Джон Лайтфут глубоко проанализировав библейские тексты, заявил, что сотворение мира выпало на 3929 год до н.э.
Однако, известные ученые того времени, а именно немецкий астроном Иоганн Кеплер и английский физик Исаак Ньютон, опираясь не только на Библию, но и на астрономические наблюдения, все же недалеко ушли от теологов и представили 3993 и 3988 годы до н.э.
Определение возраста Земли
Принцип радиоизотопного датирования по углероду. Так определяют возраст ископаемых останков живых существ на Земле.
С середины XVIII века люди начали направленно изучать возраст Земли. Согласно известным физическим моделям ученый из Франции Жорж-Луи Леклерк де Бюффон оценил время, которое потребовалось бы для понижения температуры Земли с момента ее образования до той, которую имеет она сегодня (от 75 до 168 тыс. лет). Как утверждает физическая модель Земли, изначально она представлялась раскаленным шаром. В 1895-м году инженер из Ирландии — Джон Перри пересчитал эту цифру и получил 2–3 млрд лет. В 1896-м году Антуан Беккерель открыл радиоактивность, а спустя 9 лет британский физик Эрнест Резерфорд предложил метод оценки возраста земных пород при помощи радиоактивного распада.
Идея заключалась в том, чтобы определить, какая часть радиоактивного изотопа успела распасться, используя известные периоды полураспада, вычислить возраст образца. Основы радиоизотопного датирования разработал американский радиохимик Бертрам Болтвуд. При помощи данного метода в 1920-х годах было выявлено, что возраст некоторых минералов около 2-х миллиардов лет! Очевидно, возраст Земли не может превышать возраст самого мироздания, поэтому это открытие подвигло ученых найти действенный метод подсчета возраста Вселенной.
Сегодня считается, что с момента зарождения Земли как планеты прошло 4,54 ± 0,05 млрд лет.
Тепло белых карликов
Как нам известно, белые карлики, конечный этап жизни большинства звезд, очень долго остывают. Определив основные характеристики такой звезды, можно рассчитать ее изначальную температуру, а также скорость, с которой она остывает. На основе этих данных уже относительно просто высчитывается возраст рассматриваемого белого карлика. Совершивший множество значительных открытий, телескоп «Хаббл» в 2002-м и 2007-м годах обнаружил самых холодных белых карликов. Возраст этих светил оказался 11,5-12 млрд лет. Если прибавить к этим значениям от полумиллиарда до миллиарда лет (возраст звезд, образовавших этих белых карликов), то получится минимальное значение возраста Вселенной.
Белый карлик в представлении художника
Максимальный возможный возраст определяется отсутствием менее разогретых белых карликов и составляет 15 млрд лет. Так как если бы мироздание было старше, то ученым удалось бы обнаружить хотя бы несколько настолько древних объектов.
Старые звездные скопления
Млечный Путь насчитывает более 160-ти так называемых шарообразных звездных скоплений, число звезд в которых может колебаться от тысяч до миллионов. При этом все эти светила, связаны гравитационной силой, и вероятнее всего образовались из одного газового облака. Отсюда следует, что большая часть звезд таких скоплений зародилась практически в одно время. В силу своего строения и размеров каждая звезда пошла своим эволюционным путем, а некоторые уже находятся на стадии того же белого карлика. Высчитывая возраст каждой астрономической единицы рассматриваемого скопления, можно с большой точностью определить возраст самого шарообразного скопления.
При помощи того же телескопа «Хаббл» астрономы смогли проанализировать возраст 41 шарообразного звездного скопления Млечного Пути. В результате было выявлено, что все скопления нашей галактики не младше 10 млрд лет, а наиболее старое (M4) имеет возраст 12,7 ± 0,7 миллиардов лет. Поэтому, учитывая некоторое время до формирования звезд, нижней границей возраста Вселенной стало число 13 млрд лет.
Старейшее звездное скопление Млечного пути — Мессье 4 (M4)
Хаббловское время
Но вопросом о возрасте мироздания занимался не только телескоп, названый в честь ученого, но и сам ученый, американский астроном Эдвин Хаббл. Ему удалось вывести свою известную формулу v = H*D, где v – скорость расширения Вселенной, D – расстояние от наблюдаемой галактики до наблюдателя, а H – постоянная Хаббла, которая обратно пропорциональна времени. О существовании постоянной Хаббла, как величины, определяющей зависимость между расстоянием до объекта и скоростью его удаления, впервые предположил священник астроном из Бельгии — Жорж Леметр. Согласно его идее, мир произошел из одного, условно говоря, атома, а после — стал расширяться. Позже, эта теория шутливо была названа «Большим Взрывом», но в дальнейшем этот термин прочно закрепился в космологии.
Э.П. Хаббл со снимком галактики Андромеда в руках
Спустя некоторое время, в 1929 году Э. Хаббл получил более точное значение упомянутой постоянной. Очевидно, что возраст мироздания напрямую зависит от постоянной Хаббла. Изначально, используя имеющуюся модель Вселенной, ученые рассчитали, что величину, обратно пропорциональную постоянной Хаббла нужно умножить на 2/3. Однако в таком случае искомая величина составляет около 1,2 млрд лет, число, близкое к тому, что предложили индуисты еще в 150-м году до н.э. Впрочем, к концу XX-го века уже были получены астрономические данные, которые говорили о возрасте 13-15 млрд лет.
Как выяснилось, причиной неправильной оценки стали неверные представления о расширении Вселенной. Только в 1999-м году две группы астрономов смогли доказать, что последние 5-6 млрд лет расширение космического пространства ускоряется, а не замедляется, как считалось ранее. По современным подсчетам этим методом ученые вывели значение 13,798 ± 0,037 лет.
Микроволновое излучение
Карта распределения реликтового излучения. Смотреть в полном размере.
30 июня 2001 года NASA запустила в космос аппарат под названием Wilkinson Microwave Anisotropy Probe (WNAP), задача которого изучать реликтовое излучение. При помощи результатов его наблюдений была построена новая карта (с разрешением в 35 раз больше, нежели предыдущая) распределения реликтового, микроволнового излучения. Анализируя эту карту, помимо насыщенной полосы в центре, излучаемой Млечным Путем, можно заметить распределение реликтового излучения за его пределами. Явно видимые неоднородности формируют пятнистую структуру, причем неравномерную. Подробное изучение этой структуры дает возможность точно оценить время, которое понадобилось для ее образования, вследствие Большого Взрыва. Оно составляет 13,7 ± 0,2 млрд лет.
При помощи описанных выше методов, ученые смогли достаточно точно определить возраст Вселенной, что несет первостепенное значение для космологии, а также для понимая нашего мироздания в целом.
‘ alt=»yH5BAEAAAAALAAAAAABAAEAAAIBRAA7 — Возраст Вселенной» title=»Возраст Вселенной»>
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Источник
Откуда мы знаем возраст Вселенной?
Сейчас мы можем узнать возраст Вселенной буквально за секунду, спросив об этом Google. Однако ученые потратили столетия, прежде чем выяснили ответ: почти 14 миллиардов лет, а точнее 13,8 миллиардов лет. И новые исследования продолжают подтверждать это число. В конце декабря группа ученых, работающих на Атакамском космологическом телескопе в Чили, опубликовала свою последнюю оценку — 13,77 миллиардов лет, плюс-минус несколько десятков миллионов лет. Это хорошо совпадает с данными миссии «Планк», европейского спутника, который проводил аналогичные наблюдения в период с 2009 по 2013 год.
Точные наблюдения чилийского телескопа и космического зонда — результат размышлений людей на протяжении тысячелетий, откуда взялась Вселенная. В итоге мы, люди, с продолжительностью жизни менее века, получили представления о событиях, которые произошли за много лет до того, как наша планета — и даже атомы, которые составляют нашу планету — появились. Но как мы это сделали?
Новое время: Вселенная не вечна
Опустим античность, где в почти каждой культуре хватало мифов о «творении всего сущего». Так, греческие философы, такие как Платон и Аристотель, в IV-III веках до нашей эры считали, что планеты и звезды заключены в вечно вращающиеся небесные сферы. И на протяжении почти пары тысяч лет всех это устраивало.
Противоречие с наблюдениями обнаружил лишь в 1610 году астроном Иоганн Кеплер: если в вечной Вселенной находится бесконечное количество звезд, почему все эти звезды не заполнили Вселенную ослепляющим светом? Он рассуждал, что темное ночное небо предполагает ограниченный космос, в котором звезды в конечном итоге гаснут. Вот так из неверных рассуждений он получил, в общем-то, верные выводы.
Таким представлял себе космос астроном Петр Алиан в своей книге «Космография» 1539 года.
Противоречие между наблюдаемым ночным небом и бесконечной Вселенной стало известно как парадокс Ольбера, названный в честь Генриха Ольбера, астронома, который популяризировал его в 1826 году. И следующую здравую мысль об этом парадоксе выдвинул поэт Эдгар Аллан По. В своей прозе «Эврика» в 1848 году он рассуждал о том, что Вселенная не вечна. Был момент ее образования, и с тех пор прошло недостаточно времени, чтобы звезды полностью осветили небо.
1900-е: первые оценки возраста Вселенной
Следующий шаг в решении парадокса Ольбера сделал Альберт Эйнштейн с его новой теорией гравитации. Из нее следовало, что Вселенная, вероятно, увеличивается или уменьшается со временем. Как мы знаем, это действительно так, однако гениальный физик добавил в свои уравнения ложный фактор — космологическую постоянную — чтобы Вселенная не меняла размеры (что позволяет ей существовать вечно).
Между тем, более крупные телескопы 20-ого века позволили астрономам четко разглядеть другие галактики, что вызвало ожесточенные споры о том, смотрят ли они на далекие «островные Вселенные», или же на близлежащие звездные скопления внутри Млечного Пути. Острые глаза Эдвина Хаббла окончательно разрешили парадокс в конце 1920-х годов, когда он впервые измерил межгалактические расстояния. Астроном обнаружил, что галактики не только являются огромными и далекими объектами, но и улетают друг от друга.
2.5-метровый телескоп, который помог Хабблу совершить многие его астрономические открытия.
Итак, решено: Вселенная расширяется, и Хаббл зафиксировал скорость этого процесса на уровне 500 километров в секунду на мегапарсек, ошибившись на порядок. С физической точки зрения это скорость, с которой разлетаются две галактики, находящиеся на расстоянии в 1 мегапарсек (порядка 3.2 миллионов световых лет) друг от друга. Это постоянная величина, которая теперь носит его имя. И, раз астрономы поняли, что Вселенная расширяется — значит, у нее было начало, и можно вычислить, когда именно она образовалась. Работа Хаббла в 1929 году показала, что Вселенная расширяется таким образом, что ей должно быть около 2 миллиардов лет — ожидаемая ошибка опять же почти на порядок.
«Скорость расширения говорит вам, насколько быстро вы можете перемотать историю Вселенной, как на старой видеокассете», — говорит Дэниел Сколник, космолог из Университета Дьюка. «Если скорость перемотки быстрее, значит, фильм короче».
Но достаточно точно измерять расстояния до далеких галактик тогда не умели. Более точный метод появился в 1965 году, когда исследователи обнаружили слабые микроволны, пронизывающие весь космос. На тот момент космологи уже предсказали, что такой сигнал должен существовать, поскольку свет, излучаемый всего через несколько сотен тысяч лет после рождения Вселенной, должен был растянут в результате расширения пространства и стать более длинными микроволнами. Измеряя характеристики этого космического микроволнового фона, астрономы смогли сделать своего рода снимок молодой Вселенной, определив ее первоначальный размер и состав. Этот фон послужил уже неопровержимым доказательством того, что у космоса было начало.
Карта реликтового излучения — «фото» ранней Вселенной.
«Самое важное, что было достигнуто окончательным открытием [реликтового излучения] в 1965 году, так это заставить всех нас серьезно отнестись к идее о существовании ранней Вселенной» , — писал лауреат Нобелевской премии Стивен Вайнберг в своей книге 1977 года «Первые три минуты».
С 1990 годов по настоящее время: уточнение расчетов
Реликтовое излучение позволило космологам понять, насколько велика была Вселенная в ранний момент времени, что помогло им вычислить ее размер и скорость расширения. Оказалось, что она почти в десять раз медленнее, чем вычисленная Хабблом, и составляет около 70 километров в секунду на мегапарсек, что отодвигает момент «начала космоса» еще дальше во времени. В 1990-е годы возраст Вселенной оценивался от 7 до 20 миллиардов лет.
Кропотливые усилия нескольких команд были направлены на то, чтобы максимально точно выяснить скорость расширения Вселенной. Наблюдение за далекими галактиками с помощью космического телескопа Хаббла в 1993 году показало, что текущее значение одноименной постоянной составляет 71 километр в секунду на мегапарсек, что сузило возраст Вселенной до 9-14 миллиардов лет.
Затем, в 2003 году, космический аппарат WMAP создал карту реликтового излучения с мельчайшими деталями. На основании этих данных космологи подсчитали, что возраст Вселенной составляет от 13,5 до 13,9 миллиардов лет. Примерно десять лет спустя спутник «Планк» измерил реликтовое излучение еще более детально, получив постоянную Хаббла в 67,66 и возраст в 13,8 миллиарда лет. Новое независимое измерение реликтового излучения на чилийском телескопе дало сравнимые цифры, что еще больше укрепило уверенность космологов в том, что они точны в определении возраста Вселенной.
Один из способов измерения постоянной Хаббла: вычисляется параллакс (то есть видимое смещение звезды при движении Земли по орбите, что позволяет вычислить расстояние до нее), а по красному смещению — скорость удаления звезды от нас.
Не все так просто: есть космологический конфликт
По мере того, как измерения ранней и современной Вселенных стали более точными, они начали противоречить друг другу. В то время как исследования, основанные на картографировании микроволнового фона, предполагают, что постоянная Хаббла находится на уровне 60 километров в секунду на мегапарсек, измерения расстояний до соседних галактик (которые опираются на снимки очень ярких и практически одинаковых по всему космосу сверхновых) дают более высокие темпы расширения ближе к 70 километрам в секунду на мегапарсек.
Сколник участвовал в одном таком исследовании в 2019 году, а другое измерение, основанное на яркости различных галактик, на прошлой неделе пришло к аналогичному выводу (что современная Вселенная быстро расширяется). На первый взгляд более высокие темпы расширения, которые получают эти команды, могут означать, что Вселенная на самом деле примерно на миллиард лет моложе канонических 13,8 миллиардов лет, установленных зондом «Планк» и чилийским телескопом.
Также такое несоответствие может указывать на то, что в представлении космологов о реальности не хватает чего-то важного и неочевидного. Связь реликтового излучения с современной Вселенной включает предположения о плохо изученных темных материи и энергии, которые, по-видимому, доминируют в нашей Вселенной, а тот факт, что измерения постоянной Хаббла «во времени» не совпадают, может указывать на то, что расчет истинного возраста Вселенная предполагает нечто большее, чем простую «перемотку» ленты.
«Я не уверен в теории, благодаря которой мы определяем возраст Вселенной», — говорит Сколник. «Я не говорю, что она неверна, но я не могу сказать, что она безупречна».
Источник