Меню

Временно все во вселенной

Величайшая загадка Вселенной: из чего состоит пространство-время?

«Из чего сделано пространство-время?», задается вопросом физик Арон Уолл из Стэнфордского института теоретической физики. В течение последних нет физики по-разному пытаются осмыслить загадку пространства-времени, рассматривая его не просто как пустой фон, на котором разворачивается история Вселенной, а скорее как поток квантовой информации, перетекающей из одной точки в другую. Уолл и его коллеги все больше убеждаются, что такое представление пространства-времени может быть ключом к разработке теории, которая сможет объяснить гравитацию с использованием принципов квантовой механики. Об этом физики мечтают еще со времен Альберта Эйнштейна.

Пространство и время — это две, наверное, самые неуловимые вещи в мире.

Петр Зенчиковский из Института ядерной физики Польской академии наук задается таким же вопросом, что и Уолл. Является ли пространство-время абсолютной, неизменной, вечно и всегда присутствующей ареной, на которой разворачиваются события? Или, возможно, это динамическое создание, возникающее как бы на определенном масштабе расстояний, времени или энергии? Упоминание абсолюта не приветствуется в современной физике. Считается, что пространство-время эмерджентно, то есть возникает откуда-то. Непонятно только, откуда.

Что такое пространство-время?

Большинство физиков считает, что структура пространства-времени формируется непонятным образом в пределах масштабов Планка, то есть на масштабах, близких к одной триллионной от триллионной доли метра. Однако есть некоторые убеждения, которые ставят под вопрос однозначность такого толкования. Существует немало аргументов в пользу того факта, что возникновение пространства-времени может происходить в результате процессов, которые намного ближе к нашей реальности: на уровне кварков и их конгломератов.

«Математика — это одно, отношение с реальным миром — другое», говорит Зенчиковский. «Например, величина массы Планка кажется подозрительной. Можно было бы ожидать, что у нее будет значение, более характерное для мира квантов. Между тем, оно соответствует примерно 1/10 массы блохи, которая определенно является классическим объектом».

Большинство физиков склонны предполагать, что пространство-время создается на планковских масштабах, на расстояниях, близких к одной триллионной триллионной доли метра (

10 -35 м). В своей статье в Foundations of Science Зенчиковский систематизирует наблюдения разных авторов касательно формирования пространства-времени и утверждает, что гипотеза о его формировании в масштабах кварков и адронов (или кварковых агрегатов) вполне разумна по ряду причин.

Вопросы о природе пространства и времени озадачивали человечества с древних времен. Может ли время быть отдельным от материи, создающим «контейнер» для движений и событий, которые происходят при участии частиц, как это предполагал Демокрит в 5 веке до н.э.? Или, может быть, все это атрибуты материи и не могут без нее существовать, как предположил Аристотель столетием позже?

Несмотря на то, что прошла уже тысяча лет с тех пор, эти вопросы до сих пор не решены. Более того, оба подхода — несмотря на их очевидное различие — глубоко укоренились в столпах современной физики. В квантовой механике события происходят на жесткой арене с равномерно текущим временем.

Между тем, в общей теории относительности вещество деформирует упругое пространство-время (растягивает и скручивает его), а пространство-время сообщает частицам, как двигаться. Другими словами, в одной из теорий актеры выходят на уже подготовленную сцену, чтобы играть свои роли, а в другой они создают сцену во время представления, что, в свою очередь, влияет и на их поведение.

В 1899 году немецкий физик Макс Планк заметил, что при определенных комбинациях некоторых констант в природе можно получить самые фундаментальные единицы измерения. Всего три постоянных — скорость света c, гравитационная постоянная G и постоянная Планка h — и мы получаем единицы расстояния, времени и массы, равные (соответственно) 1,62 х 10 -35 м, 5,39 х 10 -44 с и 2,18 х 10 -5 г. Исходя из современных убеждений, пространство-время должно рождаться на планковской длине. Но нет никаких существенных аргументов в пользу рациональности этой гипотезы.

Как наши самые сложные эксперименты, так и теоретические описания достигают масштаба кварков на уровне 10 -18 м. Откуда же нам знать, что на пути к планковской длине — на протяжении дюжины последовательных и еще меньших порядков величины — пространство-время обретает свою структуру? Мы даже не знаем, рационально ли понятие пространства-времени на уровне адронов! Разделение не может производиться бесконечно, потому что на определенном этапе вопрос следующей меньшей части просто перестает иметь смысл. Прекрасным примером будет температура. Эта концепция прекрасно служит на макромасштабах, но при последовательных делениях материи мы достигаем масштаба отдельных частиц и понятие температуры теряет смысл.

Читайте также:  Вселенная терминатора великая победа

«В настоящее время мы сперва стремимся построить квантованное дискретное пространство-время и затем «населить» его дискретной материей. Но если пространство-время будет продуктом кварков и адронов, зависимость будет обратной: дискретное свойство материи должно усиливать дискретность пространства-времени», говорит Зенчиковский и добавляет: «Планк опирался на математику. Он хотел создать единицы из мельчайших возможных постоянных. Но математика это одно, а отношение с реальным миром другое. Значение планковской массы кажется подозрительным. Можно было бы ожидать, что у нее будет более подходящая характеристика для мира квантов. Но она соответствует примерно 1/10 массы блохи, которая определенно является классическим объектом».

Смотришь в космос и не понимаешь, где у него конец

Поскольку мы хотим описать физический мир, мы должны опираться на физические, а не на математические аргументы. И поэтому, когда мы используем уравнения Эйнштейна, мы описывает Вселенную в больших масштабах и возникает необходимость вводить дополнительную гравитационную постоянную, известную как космологическая постоянная «лямбда». Если, при построении фундаментальных единиц, расширить наш изначальный набор трех постоянных лямбдой, в случае с массой мы получим не одно, а три фундаментальных значений: 1,39 х 10 -65 г, 2,14 x 10 56 г и 0,35 х 10 -24 г. Первую можно интерпретировать как квант массы, вторую — уровень массы наблюдаемой Вселенной, а третья напоминает массу адронов (например, масса нейтрона равна 1,67 х 10 -24 . Точно так же, принимая во внимание лямбду, появится единица измерения 6,37 х 10 -15 м, очень близкая к размеру адронов.

«Игры с постоянными могут быть рискованными, потому что многое зависит от того, какие константы мы выбираем. К примеру, если бы пространство-время действительно являлось продуктом кварков и адронов, то его свойства, включая скорость света, также должны быть эмерджентными. А это означало бы, что скорость света не может быть среди основных констант», отмечает Зенчиковский.

Другим фактором в пользу образования пространства-времени в масштабе кварков и адронов являются свойства самих элементарных частиц. Стандартная модель, например, не объясняет, почему существует три поколения частиц, откуда берутся их массы или почему существуют так называемые внутренние квантовые числа, которые включают изоспин, гиперзаряд и цвет. В картине, представленной профессором Зенчиковским, эти значения могут быть связаны с определенным шестимерным пространством, созданным положением частиц и их импульсами. Построенное таким образом пространство одинаково уважает положение частиц (материя) и их движения (процессы). Выясняется, что свойства масс или внутренние квантовые числа могут быть следствием алгебраических свойств шестимерного пространства. Более того, эти свойства также объясняют невозможность наблюдать свободные кварки.

«Возникновение пространства-времени может быть связано с изменениями в организации материи, происходящей в масштабе кварков и адронов, в более первичном шестимерном фазовом пространстве. Однако не совсем понятно, что дальше делать с этой картиной. Каждый последующий шаг потребует выхода за пределы того, что мы знаем. И мы даже не знаем правил игры, по которым Природа играет с нами, нам все равно приходится их угадывать. Однако представляется разумным, что все конструкции начинаются с материи, потому что она является физически и экспериментально доступной. В этом подходе пространство-время будет лишь нашей идеализацией отношений между элементами материи», суммирует профессор Зенчиковский.

Согласитесь с ним? Расскажите в нашем чате в Телеграме.

Источник

Возможна ли смерть Вселенной?

Существует много различных гипотез и теорий, которые предсказывают будущее Вселенной. Одни утверждают, что Вселенная имеет начало и будет иметь конец, другие, что Вселенная будет существовать вечно. Как бы то ни было, в сегодняшней статье мы рассмотрим наиболее вероятные сценарии будущего Вселенной.

Вселенная вечна?

Прежде считалось, что Вселенная может существовать вечно: она просто была, есть и будет. Но модели, разработанные на основе уравнений Эйнштейна, показали, что Вселенная не должна быть статичной (неизменной), она может эволюционировать. В 1920-х годах бельгийский священник и астроном Жорж Леметр разработал концепцию Большого взрыва. В сочетании с наблюдениями Эдвина Хаббла о расширяющейся Вселенной, астрономы пришли к мнению, что у Вселенной было начало, а значит, может быть конец.

Читайте также:  Контрольная работа по географии 5 класс география вселенная

И только в 1960-х годах, наблюдения при помощи мощных телескопов подтвердили Большой Взрыв. Тогда радиоастрономами Арно Пензиасом и Робертом Вильсоном было обнаружено космическое микроволновое фоновое излучение. Также стало понятно, что активные галактики преимущественно наблюдаются в очень далёкой части Вселенной, а, следовательно, они существовали очень давно, когда Вселенная была значительно моложе, чем сегодня, а значит Вселенная эволюционирует и не может быть вечной и неизменной.

Может ли Вселенная сжаться?

Что будет в будущем со Вселенной в большей степени определяется её геометрией, а точнее, кривизной пространства на масштабах всей Вселенной. Определить кривизну Вселенной нам поможет обычная геометрия, нам просто нужно посчитать сумму углов в треугольнике, но поскольку кривизна является очень маленькой, то треугольник должен быть огромным. Мы можем построить треугольник, с размером во всю видимою Вселенною, где вершинами будут служить далёкие галактики.

Если сумма углов этого треугольника будет больше 180 градусов, то геометрия Вселенной замкнутая и она подобна сфере. В замкнутом Вселенной сила притяжения остановит расширение и Вселенная начнёт сжиматься, пока вся материя не колапсует в сингулярность. Такая теория называется Теория Большого сжатия.

Теорию Большого сжатия можно рассматривать как теорию Большого взрыва, только наоборот.

Но последние исследования предполагают существование тёмной энергии, которая имеет свойства антигравитации, а значит есть вероятность, что силы притяжения не хватит, чтобы преодолеть антигравитацию, поэтому расширение будет продолжаться вечно.

Тепловая смерть Вселенной?

Но существует и другой сценарий конца Вселенной, это тепловая смерть Вселенной. Если сумма углов треугольника есть меньше или равна 180 градусам, то геометрия Вселенной соответственно является гиперболической или евклидовой соответственно. В первом случае Вселенную называют открытой, а в другом — плоской. В обоих случаях Вселенную ждёт вечное расширение, а следовательно, тепловая смерть.

По этой теории Вселенная рассматривается как замкнутая термодинамическая система, так как она не обменивается энергией с другими системами, ведь не существует других Вселенных вне нашей. Согласно второму закону термодинамики, замкнутая система всегда стремится к равновесному состоянию то есть к состоянию с максимумом энтропии. Таким образом, все процессы, происходящие во Вселенной, должны рано или поздно прекратиться, а все частицы будут разнесены на бесконечное расстояние друг от друга и не смогут взаимодействовать.

Хотя эта теория является сомнительной, поскольку мы неуверены в вечном расширении Вселенной, а также есть сомнения в том, что наша Вселенная единственная и является замкнутой системой. Также некоторые учёные считают, что второй закон термодинамики неточен.

Большой разрыв

Один из самых страшных сценариев конца Вселенной является Большой разрыв. При таком сценарии конец Вселенной наступит приблизительно через 22 млрд лет.

С увеличением скорости расширения Вселенной сфера Хаббла (часть Вселенной, отдаляющаяся от нас с досветовой скоростью) будет сжиматься, а значит всё более и более близкие к нам объекты будут удаляться от нас со скоростью света. Таким образом, за 60 млн лет до Большого разрыва распадутся галактики, за 3 месяца до Большого разрыва, сфера Хаббла будет размером с Солнечную систему, за 30 минут до Большого разрыва — с Землю, а за одну наносекунду до Большого разрыва будут разорваны все атомы. Что произойдёт в момент самого Большого разрыва нам неизвестно, но считается, что все известные законы физики перестанут работать, а пространство и время просто потеряют свой смысл. Хотя существуют гипотезы о том, что после этого на месте нашей Вселенной могут рождаться новые вселенные.

На данный момент учёные точно не могут сказать которая из выше упомянутых теорий является верной, ведь нам не известно, как поведёт себя тёмная энергия в будущем, а также многие параметры Вселенной, но последние исследования указывают на то, что Вселенная закончит свою жизнь в результате Большого разрыва.

Автор: Алексей Нимчук. Редакция: Фёдор Карасенко.

Ставьте палец вверх, чтобы видеть в своей ленте больше статей о космосе и науке!

Также сегодня хочу порекомендовать вам канал моего коллеги Вестник Галактики . Канал о космосе, физике и высоких технологиях: сложные вещи простыми словами, последние новости и интересные факты из мира науки.

Читайте также:  Вселенная метро 2035 питер битва близнецов

Источник

Сколько измерений у Вселенной?

Научно-фантастический фильм Кристофера Нолана «Интерстеллар» является красивым произведением, где объясняется множество научных моментов, но не все. Например, в фильме без проблем объяснили, почему червоточина выглядит так, а не иначе, но не объяснили идею более высоких измерений так тщательно, как нам бы хотелось. Поэтому давайте сами разберемся в этом вопросе.

Измерения пространства-времени действительно сложны. Мы понимаем первые три, потому что живем в них, мы овладели ими еще в младенческом возрасте.

Первое измерение — это точка, единая точка, думайте о ней как о координате. Если бы вся Вселенная была числовой линией от 0 до 10, одно измерение было бы похоже на. 6 или 3. Вы бы точно знали, где это было во Вселенной.

Два измерения тоже довольно простые, две оси, два числа. Возможно 6 на оси X и 3 на оси Y. Теперь мы знаем, где это.

Мы живем в третьем измерении, поэтому мы добавляем еще одну числовую линию. Это ось Z. И эти три числа говорят нам точно, где мы находимся в космосе.

В фильме главный герой попадает в более высокие измерения. Согласно теоретической физике, теория струн требует по крайней мере 10 измерений . Это практически невозможно представить, но мы все же попробуем разобраться.

Придерживаясь координат в пространстве, давайте подумаем о вас, прямо сейчас. Проще говоря, вы находитесь на широте, долготе и высоте. Это 3 числа, которые определяют ваше трехмерное местоположение, верно? Как насчет вашего четырехмерного местоположения?

Четвертым измерением в этом случае является время. С 4 числами мы точно знаем, где вы находитесь в 4-мерном пространстве. Вы, к примеру, находитесь на вершине горы 5 января, в 12:06.

И изменение любого из этих чисел показывает другое местоположение где-нибудь в прошлом, настоящем или будущем, или где-нибудь в другом месте. Если бы вы были четырехмерным существом, а не трехмерным, движение по вашей временной шкале было бы так же легко, как и по любой другой числовой линии, как если бы вы шли по дороге.

Поэтому попытайтесь представить мир без линейного времени, где время — это просто еще одна ось, через которую вы можете перемещаться, например, во время ходьбы или плавания. Двигаться назад, вперед, в прошлое или будущее.

А что если вы хотите двигаться влево или право? Это уже пятое измерение. Что насчет увеличения или уменьшения во времени? Теперь вы находитесь в трехмерном месте и перемещаетесь во времени, основываясь на вероятности и перестановках того, что трехмерное положение могло быть, есть, или будет на разных возможных временных шкалах.

Квантовая физика говорит, что пятое и шестое измерения являются исследованием всех этих возможностей и всех перестановок сделанного выбора.

Теперь о последних 3 измерениях. Что если бы мы могли взять точку и начали двигать ее в пространстве и времени, включая все возможные варианты будущего и прошлого для этой точки. Что касается перемещения вдоль числовой линии, где законы гравитации различны, скорость света изменилась.

Измерения с седьмого по десятое — это разные Вселенные с разными возможностями и невозможностями и даже разными законами физики. Они охватывают все вероятности и перестановки того, как работает каждая Вселенная, и всю реальность со всеми перестановками в ней по всему времени и пространству. Наивысшее измерение — это охват всех этих Вселенных, возможностей, выборов, времен, соединенных вместе.

Десять измерений пространства-времени звучат как-то безумно, но математически они сочетаются с тем, как физики начинают понимать Вселенную, составляя единую «Теорию всего». Конечно, есть другая теория, которая говорит, что есть не 10 измерений, а 11, но это немного другое.

В конце концов, знание большего об измерениях и о том, как они существуют, не поможет вам в вашей повседневной жизни, если вы не физик-теоретик. Но есть люди, которые изучают этот материал каждый день и пытаются узнать больше о том, как гравитация влияет на время, как высшие измерения влияют на квантовую теорию.

Источник

Adblock
detector