Меню

Время это расширение вселенной

В нашей Вселенной медленно исчезает время

Что, если временную часть в уравнении пространственно-временного континуума буквально исключить? Одно из последних исследований, возможно, свидетельствует о том, что время медленно и постепенно исчезает из нашей Вселенной и в один прекрасный день испарится совсем. Новая радикальная теория может объяснить космологическую загадку, которая морочила голову ученым в течение многих лет.

Ранее ученые измеряли свет далеких взрывающихся звезд, чтобы показать, что Вселенная расширяется, и темп этого расширения постоянно растет. Ученые предположили, что эти сверхновые разлетаются на части быстрее, чем стареет Вселенная. Физики также сделали вывод, что некая антигравитационная сила должна разводить галактики в стороны, и стали называть эту неизвестную силу «темной энергией».

Идея того, что само время может исчезнуть через миллиарды лет — и все остановится — была предложена еще в 2009 году профессорами Хосе Сеньовилла, Марком Марсом и Раулем Вера из Университета Баска Кантри в Бильбао и Университета Саламанки в Испании. Следствием этого кардинального движения самого времени к концу является альтернативное объяснение «темной энергии» — таинственной антигравитационной силы, которая была предложена для объяснения некоторых космических явлений.

Однако по сей день никто не знает, чем является темная энергия на самом деле и откуда берется. Профессор Сеньовилла и его коллеги предложили невероятную альтернативу. Ученые предложили исключить такое понятие, как темная энергия, вообще и еще раз пересмотреть наши взгляды. По мнению Сеньовиллы, мы обманываем сами себя, думая, что Вселенная расширяется, когда на самом деле это время замедляется. На бытовом повседневном уровне это замедление будет незаметно. Но если отслеживать ход Вселенной в течение миллиардов лет, то на космических масштабах все станет очевидно. Это изменение будет бесконечно медленным с человеческой точки зрения, но с точки зрения космологии, в силах которой изучать свет древних солнц, светивших миллиарды лет назад, его можно с легкостью измерить.

Предложение группы ученых, опубликованное в журнале Physical Review D, исключает темную энергию как вымысел. Вместо этого Сеньовилла объясняет появление ускорения постепенным замедлением самого времени.

«Мы не говорим, что расширение Вселенной само по себе является иллюзией, — объясняет физик. — Мы считаем, что иллюзией может быть ускорение этого расширения — это, в свою очередь, не отменяет наличие расширения, которое [для нас] наращивает свой темп».

Если время постепенно замедляется, «а мы наивно продолжаем использовать свои уравнения для определения изменений скорости расширения относительно обычного течения времени, то простая модель, продемонстрированная в нашей работе, показывает эффективное ускорение этого расширения».

В настоящее время астрономы могут определить скорость расширения Вселенной, используя так называемый метод «красного смещения». В основе этой техники лежит понимание того, что звезды, которые движутся от нас, краснее тех, что движутся в нашем направлении. Ученые ищут сверхновые определенного рода, которые стали эталоном в этом плане. Тем не менее точность этих измерений предполагает инвариантность времени по всей Вселенной. Если время замедляется, согласно новой теории, наше одинокое временное измерение медленно превращается в новое пространственное измерение. Таким образом, далекие древние звезды, за которыми наблюдают космологи из нашей перспективы, кажутся ускоряющимися.

«Наши расчеты показывают, что мы можем подумать, будто расширение вселенной ускоряется», — говорит Сеньовилла. В основе теории лежит один из вариантов теории суперструн, согласно которому наша Вселенная ограничена поверхностью мембраны, или браны, плавающей в многомерном пространстве. Спустя миллиарды лет время вообще перестанет быть временем.

«Тогда все замерзнет, словно снимок одного момента, навсегда. Нашей планеты к тому времени уже не будет».

Несмотря на всю свою радикальность и беспрецедентность, эти идеи не остаются без поддержки. Гэри Гиббонс, космолог Кембриджского университета, говорит, что у такой концепции есть свои плюсы. «Мы считаем, что время появилось в процессе Большого Взрыва, и если время может появляться, значит оно может и исчезать — это всего лишь обратный эффект».

Существует ли время?

В двух статьях, опубликованных в Physics Essays, Амрит Сорли, Дэвид Фискалетти и Дюшан Клинар предприняли попытку объяснить, что то, что мы имеем в виду под временем, на самом деле является абсолютной физической величиной, играющей роль независимой переменной (время, t, часто является осью X в системе координат, демонстрирующей эволюцию физической системы). Но, как отмечают ученые, мы никогда не измеряем t. Мы измеряем частоту и скорость объекта. Само по себе время является сугубо математической величиной и не существует физически.

Эта точка зрения означает не то, что время не существует, а то, что время имеет больше общего с пространством, нежели с идеей абсолютного времени. Таким образом, хотя четырехмерное пространство-время, как зачастую предполагают, состоит из трех измерений пространства и одного измерения времени, взгляд ученых предполагает, что было бы более корректно представлять пространство-время в виде четырех измерений пространства. Другими словами, Вселенная «безвременна».

Читайте также:  Как произошло рождение вселенной

«Пространство Минковского — не три измерения плюс время, а четыре измерения, — писали ученые. Точка зрения, согласно которой время представлено физической сущностью, в которой происходят материальные изменения, заменяется более удобной точкой зрения, в которой время будет просто числовым порядком материального изменения. Этот взгляд лучше отвечает физическому миру и лучше объясняет мгновенные физические явления: гравитацию, электростатическое взаимодействие, передачу информации в ходе эксперимента ЭПР и другие».

«Идея того, что время представляет собой четвертое измерение пространства, не принесла особого прогресса физике и находится в противоречии с формализмом специальной теории относительности. Сейчас мы разрабатываем формализм трехмерного квантового пространства на основе работ Планка. Похоже на то, что вселенная трехмерна на макро- и микроуровнях в планковских объемах. В таком трехмерном пространстве нет «сокращения длины», нет «замедления времени». А что есть, так это скорость материальных изменений, которая «относительна» в эйнштейновском смысле».

Ученые приводят пример этой концепции времени, изображая фотон, который перемещается между двумя точками в пространстве. Пространство между ними полностью состоит из планковских длин, то есть из мельчайших дистанций, которые может преодолеть фотон в момент времени. Когда фотон перемещается на планковскую длину, он описывается как передвигающийся исключительно в пространстве и не в абсолютном времени. Фотон можно рассматривать как движущийся из точки 1 в точку 2, и его позиция в точке 1 — это «перед» позицией в точке 2, в буквальном смысле, поскольку цифра 1 идет перед цифрой 2 в числовом ряде. Числовой порядок не эквивалентен временному порядку, то есть цифра 1 во времени не существует перед цифрой 2, только численно.

Без использования времени как четвертого измерения пространства-времени, физический мир можно было бы описать более точно. Как отмечал физик Энрико Прати в недавнем исследовании, гамильтонова динамика (уравнения в классической механике) крайне четко определяется без понятия абсолютного времени.

Другие ученые отмечали, что математическая модель пространства-времени не соответствует физической реальности, и предложили использовать вневременное «состояние пространства», которое обеспечило бы более точные рамки. Также ученые отмечали фальсифицируемость двух понятий времени. К примеру, понятие времени как четвертого измерения пространства — как фундаментальной физической емкости, в которой происходит эксперимент — может быть сфальсифицировано экспериментом, в котором время не существует.

«Теория абсолютного времени Ньютона не фальсифицируема; вы не можете доказать ее или опровергнуть — вы должны поверить ей, — говорит Сорли. — Теория времени как четвертого измерения пространства фальсифицируема, и своей последней работой мы показали, что вероятность такой фальсификации весьма высока. Экспериментальные данные показывают, что время — это то, что мы измеряем часами. А часами мы измеряем численный порядок материальных изменений, то есть движение в пространстве».

Ахиллес и черепаха

В дополнение к обеспечению более точного описания природы физической реальности, понятие времени как количественного порядка изменений может разрешить парадокс Зенона «Ахиллес и черепаха». В этом парадоксе Ахиллес пытается догнать черепаху в беге наперегонки. Но хотя Ахиллес может бежать в 10 раз быстрее черепахи, он никогда не обгонит черепаху, потому что всякий раз, когда Ахиллес пробегает определенное расстояние, черепаха проходит одну десятую этого расстояния. Таким образом, когда бы Ахиллес не достигал пункта, в котором была черепаха, она все равно будет немного впереди. Хотя вывод, что Ахиллес никогда не сможет обогнать черепаху, очевидно ложный, есть много других объяснений этого парадокса.

Парадокс можно разрешить, если переопределить скорость, так что скорость обоих бегунов будет определяться численным порядком их движений, а не перемещением и направлением во времени. С этой точки зрения Ахиллес и черепаха будут двигаться только через пространство, и Ахиллес точно обгонит соперника в пространстве, хотя и не в абсолютном времени.

Некоторые из последних исследований поставили под вопрос теорию, что мозг представляет время как внутренние «часы», испускающие нейронные тики, и предположили, что мозг представляет время в виде пространственного распределения, регистрируя активацию разных нейронных узлов. Хотя мы воспринимаем события как случающиеся в прошлом, настоящем или в будущем, эти понятия могут быть просто частью психологических рамок, в которых мы испытываем материальные изменения в пространстве.

В любом случае, если эту теорию и можно рассмотреть математически (в виде решения проблемы стрелы времени), остается еще один вопрос без ответа: что такое время?

Читайте также:  Открытая модель вселенной характеристика

Источник

Почему вселенная расширяется? И как долго?

Наша вселенная расширяется. С ускорением. Каждую секунду пространство между космическими галактиками растет все быстрее и быстрее.

Какова будет конечная судьба Вселенной — вечное расширение или великий крах? Ключом к этому является понимание «темной энергии» — самой большой загадки современной астрофизики, которая также является причиной ускорения, которое началось внезапно 4-5 миллиардов лет назад.

Только в конце двадцатого века ученые обнаружили, что вселенная расширяется с ускорением. Его начало — около 5 миллиардов лет назад, относительно скоро до возраста вселенной, которой почти 14 миллиардов лет. Это оказался огромным сюрпризом для всех ученых, потому что, согласно тогдашним теориям, вселенная должна замедляться, а не ускорять свое расширение.

На самом деле, сам Эйнштейн столкнулся с проблемами, связанными с идеей об изменяющейся, а не статичной вселенной. Великий ученый считает, что почти до самого конца своей жизни вселенная должна быть статичной и неизменной — и при этом она не должна расширяться или уменьшаться. Именно по этой причине он меняет свои уравнения, которые говорят об обратном, и добавляет к ним так называемые космологическая постоянная, которая препятствует расширению пространства.

Когда в 1929 году американский астроном Эдвин Хаббл открыл так называемую красное смещение галактик, становится ясно, что кажется, что все другие галактики в космосе «убегают» от нас.

Когда автомобиль движется к нам, его звук меняется, а когда галактика движется, ее «цвет» меняется, и мы можем определить, приближается ли он к Земле или удаляется от нее.

Хаббл наблюдает за смещением видимого света галактик в красный спектр, что означает, что объект удаляется, и мы можем измерить его скорость. Это так называемый закон Хаббла, и скорость расширения сегодня известна как постоянная Хаббла (около 72 км в секунду на мегапарсек, равная 1 парсек = 31 триллион километров или 206 265 раз расстояния между Землей и Солнцем, и 1 мегапарсек = 1 миллион парсек).

Поэтому единственно возможное объяснение состоит в том, что пространство вселенной расширяется и не может быть статичным. И хотя эксперименты Хаббла являются эмпирическим доказательством, математическое изложение этого факта было сделано еще раньше бельгийским математиком Жоржем Ломмером в 1927 году. Перед лицом этого доказательства Эйнштейн отказался от космологической постоянной и даже назвал ее «самой большой ошибкой в его карьера».

Сегодня, однако, совершенно неожиданно, что нам снова нужна космологическая константа, хотя и немного другим способом.

Теория большого взрыва и эволюция вселенной

Как только станет ясно, что галактики убегают друг от друга, логично предположить, что в начале все они были сгруппированы в одном месте. Более того, мы можем предположить, что в самом начале вселенная была сжата в одну взорвавшуюся точку. Так рождается теория большого взрыва.

Сегодня это одна из широко признанных и проверенных теорий развития вселенной. Причина в ее огромной объяснительной силе. Действительно, если все когда-либо было собрано в одной точке, то это состояние должно быть с огромной температурой и невероятной плотностью. Моделирование таких условий является одной из задач современных ускорителей частиц, таких как Большой адронный ускоритель в ЦЕРНе. Объясняя появление химических элементов в результате Большого взрыва, Первичный нуклеосинтез, также является одним из больших успехов теоретической ядерной физики.

Но это остается проблемой. Предполагая, что был начальный Большой взрыв, который «раздувает вселенную» и обеспечивает сравнительную однородность пространства в большом масштабе, и в любом направлении, которое так, и мы наблюдаем это, если будет какой-либо энергетический след этого первичного колоссального взрыва, который мы можем видеть? Оказывается, есть доказательство.

Это так называемый космическое микроволновое фоновое излучение, также называемое остаточным или реликтовым излучением. Идея состоит в том, что, когда вселенная очень молода, она находится в чрезвычайно плотном и горячем состоянии плазмы и непрозрачна. Во время процесса расширения его температура снижается, и он начинает охлаждаться. При более низкой температуре могут образовываться стабильные атомы, но они не могут поглощать тепло, и Вселенная становится прозрачной (примерно через 300-400 лет после взрыва). Это время, когда испускаются первые фотоны, которые даже сегодня циркулируют в пространстве и могут быть обнаружены нами. Поэтому их излучение называется реликтовым, т.е. остаточное. Этот момент — также самая далекая вещь, которую мы можем видеть с нашими телескопами.

В 1964 году два радиоастронома — Арно Пензиас и Роберт Уилсон — экспериментально обнаружили эффект реликтового фона — устойчивый микроволновый «шум» с температурой около 2,7 Кельвина, равномерный в любой точке неба без связи со звездой или другим объектом. Это голос космоса, остаток взрыва, породившего нашу вселенную. Это окончательное доказательство справедливости теории Большого взрыва, за которую два радиоастронома получили Нобелевскую премию в 1978 году.

Читайте также:  Путешествие во вселенную сердца

Космическое микроволновое фоновое излучение

Помимо неоспоримого доказательства Большого взрыва, реликтовое излучение дало нам еще кое-что. Зонд WMAP (микроволновый зонд анизотропии Уилкинсона), запущенный в 2001 году, отображает космическое фоновое излучение в наблюдаемой Вселенной. Различный цвет рисунка соответствует небольшой разнице в температуре излучения. В результате излучение является однородным с точностью до пяти знаков после запятой. Однако там, после пятого знака, что-то интересное и удивительное — темная материя.

Он взаимодействует только гравитационно, и мы не можем установить или доказать это каким-либо другим способом. По оценкам, его содержание составляет около 25 процентов от общей плотности вселенной, в то время как обычная, наша материя, составляет всего 4-5 процентов.

Хотя темную материю нельзя наблюдать непосредственно, ее присутствие было предложено Фрицем Цвицким в 1934 году для объяснения так называемой «Проблема с недостающей массой».

Оказывается, что галактики не могут быть стабильными и вращаться, как они это делают, если не существует огромного количества скрытой массы, удерживающей звезды в соединенной галактике. Результаты исследования космического фонового излучения однозначно подтверждают наличие большого количества темной материи.

Результаты WMAP также можно использовать для проверки геометрии юниверса — закрытой, открытой или плоской.

Сегодня мы знаем, что Вселенная плоская с точностью до 0,5 процента. Это хорошо, но это также означает, что в зависимости от плотности вещества и энергии во вселенной у нас может быть другой конец эволюции пространства. Если общая плотность (так называемый космологический параметр Омеги) превышает критическую массу, Вселенная может сжаться в так называемую Большой крах, прямо противоположный большому взрыву. Или, наоборот, мы можем расширяться до бесконечности, пока сама вселенная не станет довольно холодной, пустынной и относительно скучной. Это теория Большого охлаждения.

Темная энергия и конечная судьба Вселенной

На самом деле, как мы можем знать, что произошло с пространством Вселенной, и что будет с ним в будущем? Поскольку скорость света ограничена, чем дальше находится объект, тем дольше свет должен будет добраться до нас. Например, путь света от нашего Солнца до Земли составляет чуть более 8 минут. Наблюдая с помощью наших телескопов далеких звезд, мы на самом деле видим прошлое, когда ловим свет, который давно покинул их и только сейчас достигает нас. Тогда, если мы знаем, что наблюдаем два одинаковых объекта, но на разном расстоянии, мы можем вывести изменение пространства между ними во времени.

Объекты, которые относительно «идентичны» в космосе, известны как стандартные свечи.

Это могут быть переменные звезды особого типа, так называемые Цефеиды. Они пульсируют одинаково, т.е. излучать один и тот же световой поток через равные промежутки времени. Другими такими объектами, которые являются еще более точными показателями расстояний, являются вспышки сверхновых типа IA. Они представляют собой термоядерное разрушение звезды (фактически пары звезд). Из-за особенностей процесса всегда выделяется одна и та же энергия. Вот почему сверхновые IA — наши самые известные стандартные свечи.

В частности, в 1997 году исследования сверхновых показали, что Вселенная расширяется с ускорением. Поскольку энергия вспышки всегда одна и та же, разница, которую мы наблюдаем (более тусклые или более яркие вспышки), обусловлена ​​исключительно разницей в динамике пространства. Таким образом, мы можем получить карту эволюции пространства во времени. Оказывается, что в первые 8-9 миллиардов лет после взрыва Вселенная замедляется, как и следовало ожидать, а затем внезапно начинает расширяться с ускорением!

Это огромный парадокс, и причина ускоренного расширения пока неизвестна. Чтобы объяснить это, ученые вновь вводят космологическую постоянную Эйнштейна в уравнения, но с противоположным знаком — то есть он действует как антигравитация и целесообразно расширяет пространство.

Тем не менее похоже, что Эйнштейн не так сильно ошибался.

Сегодня мы знаем, что темная энергия занимает около 70 процентов от общей плотности энергии Вселенной. Мы понятия не имеем, почему он начинает свое действие или какова его природа. Вполне возможно, что его сила будет уменьшаться или увеличиваться со временем.

В зависимости от этого, есть два сценария конца нашей вселенной. Если космологическая постоянная продолжает работать и расти, мы будем расширяться вечно. Если, наоборот, его сила уменьшается и гравитация побеждает, тогда концом нашего космоса может стать Великое Падение. Тогда, почему бы и нет, возможно, новая вселенная родится в новом космическом Большом Взрыве. Но пока это просто загадки, ответы на которые скоро будут раскрыты.

Источник

Adblock
detector