Меню

Все дыры которые есть во вселенной

Что это за «дыры» во Вселенной?

В Интернете, стоит полагать, есть много прекрасной и научно точной информации. Но при этом есть много сайтов с назойливой рекламой, предлагающей кликнуть и узнать, что там, по ту сторону баннера, которая не всегда отличается научной точностью. К примеру, «ученые обнаружили пустоты во Вселенной». Давайте поговорим об этом. Внимание, вот вам дыра во Вселенной. Якобы она лишена какой бы то ни было материи.

Это облачко небольшое и довольно близкое:

  • оно всего в 500 световых годах от нас,
  • его радиус всего четверть светового года
  • и оно содержит в два раза больше массы Солнца в общем.

Поскольку нейтральный газ блокирует видимый свет, но является прозрачным для волн длиннее, мы вполне можем разглядеть фоновые звезды, взглянув в инфракрасном или радиодиапазоне волн.

Так что объект на этом фото явно не дыра во Вселенной. Но это научное открытие, которое было совершено в 2007 году.

Команда Рудника, Шей и Уильямса, которые исследовали эту область неба, обнаружили, что в этом регионе галактик на 20-45% меньше, что можно интерпретировать разными способами.

Вселенная, конечно, удивительное место, но на крупных масштабах она выглядит скорее порядком, чем хаосом.

Источник

8 самых больших черных дыр во Вселенной — Согласно их солнечным массам

Самый большой тип черных дыр — так называемые сверхмассивные черные дыры — имеют массы порядка от сотен тысяч до миллиардов масс Солнца. Масса нашего Солнца составляет 1,989 x 10 30 кг, что примерно в 333 000 раз больше массы Земли.

Предполагается, что почти все большие галактики содержат сверхмассивную черную дыру, расположенную в центре галактики. На самом деле существует тесная связь между образованием черной дыры и самой галактикой.

Хотя во вселенной существуют миллионы сверхмассивных черных дыр, невероятно массивные из них редки, и на сегодняшний день идентифицировано лишь малое их количество.

Определить массу большой черной дыры крайне сложно

Чтобы измерить массу сверхмассивных черных дыр, ученые используют различные сложные методы, в том числе доплеровские измерения, отображение реверберации широкой эмиссионной линии, отношение M-сигма и дисперсию скорости.

Массы, полученные из этих методов, часто противоречат друг другу. Поэтому они все еще остаются в области открытых исследований.

Ниже мы собрали несколько самых больших черных дыр с известными массами, измеренными по крайней мере на порядок. Список далеко не полон, но он дает приблизительное представление о том, насколько сложна и обширна наша вселенная.

8. Центральная черная дыра кластера Феникс

Солнечная масса: 2 × 10 10

Кластер Феникса является одним из самых массивных из известных кластеров, большая часть его массы находится в форме темной материи и внутрикластерной среды.

Сверхмассивная черная дыра в центральной галактике скоплений качает энергию в систему. Считается, что он в 20 миллиардов раз массивнее Солнца, а его горизонт должен составлять порядка 118 миллиардов километров в диаметре.

Данные Чандры и различные наблюдения на других длинах волн показали, что эта черная дыра растет быстро со скоростью, в 60 раз превышающей массу Солнца каждый год. Но так как он уже очень велик, этот показатель не является устойчивым. Рост не может длиться более 100 миллионов лет.

7. NGC 4889

Самая яркая сфера около центра — галактика NGC 4889, в которой находится космический сюрприз | Предоставлено: НАСА.

Солнечная масса: 2. 1 × 10 10

Обнаруженный в 1785 году, NGC 4889 является самой яркой галактикой в ​​северной части скопления комы, расположенной на среднем расстоянии 308 миллионов световых лет от Земли.

В основе NGC 4889 находится одна из самых больших черных дыр, которая нагревает внутрикластерную среду за счет трения, создаваемого падающей пылью и газами. Эта сверхмассивная черная дыра почти в 5200 раз массивнее центральной черной дыры Млечного Пути, и весит около 21 миллиарда солнечных масс.

Горизонт событий черной дыры имеет ширину от 20 до 124 миллиардов километров, что эквивалентно диаметру орбиты Плутона от 2 до 12 раз.

В настоящее время он дремлет, и вокруг него, кажется, остаются стабильные звезды. Тем не менее космический телескоп Хаббла обнаружил ионизированную среду вокруг сверхмассивной черной дыры, предполагая, что NGC 4889, возможно, был квазаром миллиарды лет назад.

Квазар — чрезвычайно яркое активное галактическое ядро, в котором сверхмассивная черная дыра окружена газообразным аккреционным диском. Он так сильно затягивает пыль и газ, что нагревает вещество до миллионов градусов, что приводит к огромным выбросам энергии.

6. APM 08279 + 5255

Солнечная масса: 2. 3 × 10 10

В 2002 году наблюдения Чандры показали, что высокоскоростные ветры уносят газы (до 40% скорости света) из сверхмассивной черной дыры, питающей квазар APM 08279 + 5255.

Квазар расположен в созвездии Рысь и имеет яркость, равную одному квадриллиону, яркости Солнца. Это яркий источник света практически на всех длинах волн, и он стал одним из наиболее исследованных отдаленных объектов.

Читайте также:  Вариант динамической модели вселенной открытой вселенной характеризуется

Сверхмассивная черная дыра, питающая APM 08279 + 5255, весит 23 миллиарда солнечных масс (измеряется по скоростям молекулярного диска). Однако другой метод измерения, называемый реверберационным картированием, показывает, что черная дыра весит 10 миллиардов солнечных масс — огромная разница между обоими методами измерения.

Двойное изображение квазара вызвано гравитационным линзированием (изгибанием его света галактикой, попавшей в него). Этот эффект также усиливает свет квазара в 100 раз, что позволяет углубленно изучить его характеристики, даже если он находится на расстоянии 12 миллиардов световых лет.

В последнее десятилетие исследователи также обнаружили, что APM 08279 + 5255 имеет достаточно воды, чтобы заполнить океаны Земли более чем в 100 триллионов раз.

5. NGC 6166

Солнечная масса: 3 × 10 10

NGC 6166 — одна из самых ярких эллиптических галактик [с точки зрения рентгеновского излучения], расположенная на расстоянии 490 миллионов световых лет в созвездии Геркулеса. Около 39 000 шаровых скоплений вращаются вокруг галактики, что указывает на то, что гало NGC 6166 плавно смешивается с внутрикластерной средой.

В центре галактики есть сверхмассивная черная дыра, масса которой в 30 миллиардов раз больше массы Солнца. Ежегодно он поглощает около 200 солнечных масс газа, создавая большие релятивистские струи.

Ученые предположили, что центр галактики может также содержать несколько звезд O-типа; редкие сине-белые звезды с температурой более 30000 кельвинов.

4. H1821 + 643

Солнечная масса: 3 × 10 10

Сильно светящийся квазар, H1821 + 643, расположен в гигантском кластере с сильным охлаждающим потоком в созвездии Драко.

В 2014 году исследователи обнаружили H1821 + 643 как одну из самых массивных черных дыр и точно рассчитали ее массу, которая эквивалентна 30 миллиардам солнечных масс. Горизонт событий черной дыры имеет ширину 1150 а.е. (1 астрономическая единица равна примерно 150 миллионам километров), а его средняя плотность составляет 22 грамма на метр куба, что меньше, чем воздух на Земле.

Исследователи также обнаружили, что внутрикластерная среда вокруг квазара существенно отличается от других крупных скоплений галактик — энтропия и температура значительно ниже и имеют гораздо более крутые градиенты.

Недавно детальный анализ квазара доказал, что наша вселенная заполнена огромными количествами ионизированного водорода, сопровождаемого ионизированным кислородом.

3. IC 1101

Солнечная масса: (4-10) × 10 10

IC 1101, одна из самых больших и ярких галактик во вселенной, содержит в своем центре сверхмассивную черную дыру, масса которой в 40-100 миллиардов раз превышает массу Солнца.

Это эллиптическая галактика, расположенная на расстоянии 1,04 миллиарда световых лет от Земли. Галактика имеет массу около 100 триллионов звезд и простирается на 2 миллиона световых лет от ее ядра.

Как и другие массивные галактики, IC 1101 содержит большое количество богатых металлами звезд, некоторым из которых 11 миллиардов лет, и они имеют золотисто-желтый цвет.

2. S5 0014 + 81

Солнечная масса: 4 × 10 10

S5 0014 + 81 относится к наиболее энергичному типу активных ядер галактик — это блазар, расположенный вблизи области высокого склонения созвездия Цефея, на расстоянии около 12,07 миллиардов световых лет от Земли.

Это 6-й самый яркий квазар, известный на сегодняшний день, с яркостью более 10 41 Вт. Чтобы поместить это в перспективу, это в 25 000 раз ярче, чем все звезды в галактике Млечный Путь вместе взятых.

Центральная черная дыра блазара чрезвычайно жестока — она ​​поглощает огромное количество материалов (более 4000 солнечных масс вещества) каждый год.

В 2009 году данные, полученные из Обсерватории Нила Герилса Свифта, позволили ученым рассчитать массу центральной черной дыры. Они обнаружили, что он в 40 миллиардов раз массивнее нашего Солнца, а его горизонт событий имеет ширину 236,7 миллиарда километров, что эквивалентно 40-кратному радиусу орбиты Плутона.

1. TON 618

Солнечная масса: 6,6 × 10 10

Тон 618 — это гиперлюминиевый квазар, расположенный в 10,37 миллиардах световых лет от Земли. Он содержит самую большую черную дыру [известную человечеству], вес которой в 66 миллиардов раз превышает массу нашего Солнца.

Впервые он был обнаружен в 1957 году при съемке слабых голубых звезд, которые не лежат на плоскости Млечного Пути. Более детальное радиообследование, проведенное в 1970 году, определило TON 618 как квазар.

TON 618 считается аккреционным диском чрезвычайно горячего газа, циркулирующего вокруг массивной черной дыры в центре галактики. Это так ярко, что затмевает остальную часть галактики. Фактически, это один из самых ярких объектов во Вселенной со светимостью 4 × 10 40 Вт, что эквивалентно 140 000 миллиардов раз больше Солнца.

Читайте также:  Какие есть вселенные кроме млечного пути

Поскольку газ в аккреционном диске движется с очень высокой скоростью (около 7000 км / с), черная дыра создает исключительно сильную гравитационную силу. И горизонт событий такой массивной черной дыры будет 2600 а.е. в диаметре.

Источник

Спросите Итана №15: Самые большие чёрные дыры во Вселенной

Лишь спускаясь в бездну, мы познаём драгоценности жизни. Где вы споткнётесь, там и найдёте свою драгоценность.
— Джозеф Кэмпбел

Наблюдая за удалёнными квазарами мы видим их сверхмассивные чёрные дыры, массою в 10 9 солнечных. Каким образом им удаётся достигать такого размера за такое короткое время?

Эта проблема более сложна, чем кажется на первый взгляд. Начать нужно с астрофизики.

Вы, возможно, уже знаете, что звёзды бывают разных размеров и цветов, с разным сроком жизни и массы, и что все эти свойства связаны друг с другом. Чем больше звезда, тем больше ее ядро, в котором, согласно принципам ядерного синтеза, сгорает её топливо. Это значит, что более массивные звезды горят более ярко, при более высоких температурах, у них больше радиус и сгорают они тоже быстрее.

Если звезде, вроде нашего Солнца, может потребоваться больше десяти миллиардов лет, чтобы сжечь все её топливо в ядре, то звёзды могут быть в десятки и даже сотни раз массивнее нашего Солнца, и вместо миллиардов лет они могут синтезировать весь водород в ядре в гелий за несколько миллионов, а в некоторых случаях, даже за несколько сотен тысяч лет.

Что случается с ядром, когда оно сжигает свое топливо? Надо учесть, что энергия, освобождающиеся при этих реакциях — это единственное, что сдерживает ядро против огромной силы гравитации, которая постоянно работает над сжатием всей материи в звезде в наименьший возможный объём. Когда эти реакции синтеза останавливаются, ядро быстро сжимается. Скорость сжатия имеет значение, потому что, если сжимать материю медленно, температура будет оставаться постоянной, но у неё будет увеличиваться энтропия; а если сжимать её быстро, то энтропия будет постоянной, а температура будет увеличиваться.

В случае массивных звёзд увеличение температуры означает, что звезда может начать синтезировать всё более и более тяжелые элементы, начиная от гелия, проходя через углерод, азот, кислород, неон, магний, кремний, серу, и в конце концов подходя к железу, никелю и кобальту. Заметьте, что эти элементы формируются с увеличением ядерного числа на 2, из-за того, что гелий соединяется с существующими элементами. И когда вы доходите до железа, никеля и кобальта, самых стабильных элементов, то дальнейший синтез становится невозможным, и ядро взрывается наружу, превращаясь в сверхновую 2-го типа.

Если это происходит не в очень массивной звезде, вы получите ядро нейтронной звезды. А если вы возьмете более массивную звезду, с более тяжёлым ядром, то она не выдержит гравитации и создаст внутри себя чёрную дыру. Звезда размером в 15-20 раз больше Солнца, скорее всего, создаст чёрную дыру в центре после своей смерти. А более массивные звёзды будут создавать более массивные чёрные дыры. Можно представить себе огромное количество достаточно массивных звёзд, из которых рождаются черные дыры, находящиеся в ограниченном пространстве. А затем эти чёрные дыры объединяются вместе со временем, или же происходит как объединение чёрных дыр, так и пожирание ими звёздной и межзвёздной материи, что, по нашим наблюдениям, тоже случается.

К сожалению, это происходит не настолько быстро, чтобы совпасть с нашими наблюдениями. Видите ли, если звезда становится слишком массивной, внутри неё не появится черная дыра! Если наблюдать за звездами массой от 130 солнечных, то внутренности звезды становятся настолько горячими, и в них содержится столько энергии, что высокоэнергетические частицы, появляющиеся там, могут формировать пары материя-антиматерия в виде позитронов и электронов. На первый взгляд, в этом нет ничего страшного, но вспомните, что происходит в ядрах этих звезд: всё, что удерживает их от коллапса, это давление, оказываемое изнутри изучением, происходящим от ядерного синтеза. А когда начинают появляться пары электронов и позитронов, они исключаются из присутствующего излучения, что приводит к уменьшению давления на ядро изнутри. Такие вещи начинаются уже у звёзд массой от 100 солнечных, но если вы дойдёте до массы в 130 солнечных, давление уменьшается настолько, что звёзды начинают коллапсировать — и очень быстро!

Ядро разогревается, а в нём содержится большое количество позитронов, которые аннигилируют с обычной материей и производят гамма-излучение, которое ещё больше разогревает ядро. В конце концов, у вас получается нечто настолько энергичное, что это разрывает всю звезду в клочья, очень ярким и красивым образом. Так получается сверхновая нестабильных пар. Это не только уничтожает внешние слои звезды, но и само ядро, и после этого взрыва не остается совсем ничего!

Читайте также:  Что такое барьер вселенной

Даже без учёта достаточно больших черных дыр, быстро сформировавшихся в нашей Вселенной, мы всё равно можем получить сверхмассивные черные дыры — такие, как та, что находится в центре нашей галактики. У неё, судя по орбитам звёзды, вращающихся вокруг, масса составляет несколько миллионов солнечных масс.

Но таким способом нельзя получить чёрные дыры, весящие миллиарды солнечных масс, как та, что находится в достаточно недалекой от нас галактике Messier 87.

То, о чём спрашивает читатель, это сверхмассивные чёрные дыры, весящие порядка несколько миллиардов солнечных масс. И они обнаруживаются с большим красным смещением, что говорит о том, что они уже очень давно были очень большими.

Можно подумать, что во Вселенной с самого начала уже были такие огромные чёрные дыры, но это не соответствует тому, что мы знаем о молодой вселенной по спектральной мощности материи и из фонового космического излучения. Откуда бы ни появились эти сверхмассивные чёрные дыры, маловероятно, что они были здесь с самого начала — но сейчас их можно найти даже в очень молодых галактиках!

Значит, если обычные звёзды не могут произвести такие чёрные дыры, и Вселенная не родилась вместе с ними,- откуда же они взялись?

Оказывается, что звезды могут быть даже ещё более массивными, чем те о которых мы уже говорили. И когда они достигают огромных масс, то появляется новая надежда. Давайте вернёмся к первым звёздам, сформировавшимся во Вселенной из доисторических водорода и гелия – газов, которые тогда существовали, всего лишь через несколько миллионов лет после Большого взрыва.

Есть много доказательств, указывающих на то, что в то время звёзды формировались в крупных регионах — не так, как сегодняшние звёздные кластеры в нашей галактике, содержащие несколько сотен или тысяч звёзд. Тогда большие скопления содержали миллионы или даже больше звёзд. Если мы посмотрим на ближайший к нам и крупный регион формирования звёзд в туманности Тарантул, находящейся в Большом Магеллановом облаке, мы сможем понять, что происходит.

Этот район космоса имеет 1000 световых лет в поперечнике. В его центре есть огромная область, где формируются новые звезды — R136. Она содержит новые звёзды, чья масса в сумме составляет около 450000 солнечных масс. Этот комплекс активен, там формируются новые массивные звезды. А в центре центрального региона можно обнаружить кое-что действительно уникальное: самую массивную из всех известных звёзд во Вселенной!

Самая большая звезда в этом районе в 265 раз тяжелее Солнца, и это очень примечательное явление. Вспомним, что я говорил о сверхновых нестабильных пар, и как они уничтожают звёзды, которые тяжелее 130 солнечных масс, и не оставляют после себя чёрные дыры. Эта формула работает до определённого момента — только для звёзд, у которых масса больше 130 солнечных, но меньше 250 солнечных. А если масса увеличится ещё больше, мы будем получать гамма-излучение такой силы, что будет происходит фотоядерная реакция — когда гамма-лучи охлаждают внутренности звезды, выбивая тяжёлые ядра и превращая их в свет.

Если звезда обладает массой более 250 солнечных масс, она полностью сколлапсирует в черную дыру. Звезда массой 260 солнечных масс может создать чёрную дыру массой 260 солнечных. Звезда в 1000 солнечных масс создаст чёрную дыру массой 1000 солнечных масс. И поскольку мы можем сделать звёзды с огромными массами в нашем изолированном уголке космоса, то мы можем сделать эти объекты в то время, когда Вселенная была молодая. И мы, скорее всего, сделали достаточно большое количество этих объектов – а ведь они ещё будут объединяться.

А если можно создать район, где образовалась массивная чёрная дыра в несколько тысяч солнечных масс всего лишь через несколько миллионов или десятков миллионов лет после Большого взрыва, то быстрое объединение и аккреция этих регионов, где формируются звёзды, наводит на мысль о том, что эти ранние большие черные дыры однозначно объединялись бы друг с другом. Через короткое время они сформировали бы всё большие и большие чёрные дыры в центрах этих регионов, которые затем превратились в первые гигантские галактики Вселенной.

Этот рост, продолжающийся во времени, легко может привести нас к скромным прикидкам о чёрных дырах массой в несколько сотен миллионов солнц, которые может породить галактика размером с Млечный путь. Нетрудно представить, что более массивные галактики и нелинейные эффекты могут увеличить вероятные массы чёрных дыр до миллиардов солнечных масс без всяких проблем. И хотя мы не знаем точно, но насколько мы можем судить, исходя из тех знаний, которые у нас есть – именно так и появляются сверхмассивные чёрные дыры.

Источник

Adblock
detector