Лунные кратеры: почему они появились и какие из них самые большие
Кратеры на Луне – явление удивительное для человеческого глаза. Как только у обитателей Земли появилась возможность различать крупнейшие лунные кратеры помощью простейших телескопов, сразу же последовали попытки объяснить их появление. Кстати, первым обнаружил лунные кратеры Галилео Галилей в 1609 г., да и само название «кратер» тоже дано Галилеем – за сходство пологих “воронок” кратеров на спутнике Земли, широкогорлым древнегреческим сосудам прошлого, называемым кратерами.
Лунная поверхность сплошь покрыта кратерами – разрушить их в условиях отсутствия атмосферы и геологической активности могут…. только вновь падающие метеориты создающие новые кратеры
Существовало две основных гипотезы происхождения лунных кратеров – метеоритная и вулканическая. Вплоть до 20-го века предпочтение отдавалось вулканической гипотезе, так как по мнению ученых того времени метеориты должны были оставлять форму эллипса, ведь они падают на поверхность небесного тела под углом.
Однако новозеландский ученый Джиффорд в 1924 году впервые предоставил качественное описание падение и удара метеорита о поверхность планеты, двигающегося с космической скоростью. Из этого описания следовало, что большая часть метеорита при таком ударе испаряется, а форма кратера от угла падения не зависит.
Что представляет собой лунный кратер?
Лунным кратером называется чашеобразное углубление на поверхности Луны, окруженное кольцевидным приподнятым валом и имеющее сравнительно плоское дно. Большинство лунных кратеров в соответствии с действующими современными представлениями представляют кратеры ударного типа. Лишь незначительная часть из них до этого момента относится к вулканическим кальдерам.
Сегодня на поверхности Луны можно свидетельства бомбардировки ее метеоритами, кометами и астероидами. Существует примерно полумиллиона кратеров, которые имеют размер свыше 1 км. Из-за того, что на Луне нет атмосферы, воды, а также не происходили значительные геологические процессы, кратеры оказались “законсервированы” и не подвергались существенным изменениям. Поэтому даже древние кратеры находятся на поверхности Луны в практически нетронутом состоянии.
Кратеров на Луне так много, что существует даже специальная классификация лунных кратеров (создана в 1978 г. Чарльзом Вудом и Лейфом Андерссоном), включающая 5 типов.
Классификация лунных кратеров
Тип | Особенности | Примерный размер | Пример |
ALC | Классический круглый кратер, представляющий собой сужающийся конус с гладкими стенками (например кратер Аль-Баттани C) | 0-10 км | |
BIO | Более крупный кратер типа ALC, дно которого представляет собой уже не острие конуса, а плоскую площадку (см. кратер Био). | 10-15 км | |
SOS | Этот тип кратеров напоминает суповую тарелку с ровными, правильными стенками, и имеет широкое, ровное плоское дно (см. кратер Созиген). | 15-25 км | |
TRI | В отличие от предыдущего вида имеет в середине имеется центральный пик (у относительно крупных кратеров этого вида, больше 25 км в диаметре), а края обычно неровные и частично обрушившиеся (см. кратер Триснеккер) | 15-50 км | |
TYC | Крупные кратеры предыдущего вида, с хорошо видимым центральным пиком и террасовидным (ступенчатым) краем (см. кратер Тихо) | больше 50 км |
Эту классификацию можно дополнить ещё двумя типами лунных образований, правда они больше “неофициальные”.
Лунные бассейны | Огромные кратеры типа TYC, утратившие центральный пик (см. бассейн Южный полюс-Эйткен). По размерам эти кратеры приближаются к лунным морям. | больше 200 км |
Талассоиды | В общем-то тоже, что и бассейны или даже небольшие лунные моря, но имеющие светлое дно, не залитое тёмной лавой (см. кратер Королев) | больше 200 км |
Морфологические признаки кратеров
К морфологическим признакам кратеров можно отнести:
- Кратер окружает местность с породами, которые выброшены при ударе (импакте). Как правило, они светлее старых пород вследствие меньшего воздействия солнечной радиации.
- Система радиальных лучей, образованных ударными выбросами и отходящих от кратера, в некоторых случаях простираются на весьма большое расстояние.
- Внешний вал с породами, которые были выброшены при ударе, однако упавшие около кратера.
- Центральный пик, который характерен для кратеров, его диаметр превышает 26 км, данный процесс его появления подобен образованию капли отдачи во время падения в воду небольшого предмета.
- Дно чаши кратера.
- Внутренний склон.
Морфологические признаки кратера во многом связаны с его размером. Стандартный небольшой кратер в 5 км включает острый внешний вал по высоте до 1000 м, а также дно чаши, находящееся на уровне ниже 100 м местности, которая окружает ее.
Кратерам, которые имеют диаметр выше 26 км, свойственен центральный пик. Крупные кратеры диаметром примерно 100 км обладают внешним валом возвышения 1000 — 5000 м.
Светлые лучи расходящиеся от лунных кратеров это мелкие частицы метеорита «сплющившегося» о поверхность Луны при ударе. Факт остается фактом – частицы разлетаются не «облачком», а несколькими мощными струями
Как даются названия лунным кратерам
На Луне множество кратеров и все они имеют свои названия. Откуда берутся эти названия и можно ли переназвать один из существующих кратеров в свою честь? Можно, хотя это будет и не просто.
Присвоением официального названия кратера Международный астрономический союз (МАС) утвержденный в 1919 году. Несмотря на то, что за минувшие к тому времени 360 лет всем более-менее крупным кратерам уже успели дать название их первооткрыватели, для всех новых объектов обнаруженных с того времени уже действовали вполне четкие праивла именования.
- Кратеры на Луне получают своё название в честь умерших выдающихся учёных, инженеров и исследователей, внёсших значительный, фундаментальный вклад в своей области.
- Кратеры вокруг Моря Москвы названы в честь погибших советских космонавтов, а кратеры вокруг кратера Аполлон названы в честь погибших американских астронавтов. Это правило может быть распространено и для других космических держав, которые потеряют своих космонавтов.
- Для маленьких кратеров используются только имена, без фамилий (например кратер Борис). Как правило, официальные названия не присваиваются кратерам размером менее 100 метров, кроме случаев, когда такие кратеры представляют исключительный научный интерес.
Список 30 крупнейших кратеров на Луне
Название по-русски | Международное название | Диаметр кратера | В честь чего/кого назван | Год утверждения названия МАС |
Аполлон | Apollo | 524 км | В честь американской лунной программы Аполлон | 1970 |
Байи | Bailly | 301 км | В честь астронома Жан Сильвен Байи (1736—1793) | 1935 |
Белькович | Bel’kovich | 215 км | Астроном, исследователь Луны Игорь Владимирович Белькович (1904—1949) | 1964 |
Биркхоф | Birkhoff | 330 км | Математик Джордж Биркхоф (1884—1944) | 1970 |
Ван де Грааф | Van de Graaff | 240 км | Физик Роберт ван де Грааф (1901—1967) | 1970 |
Гагарин | Gagarin | 262 км | Космонавт Юрий Алексеевич Гагарин (1934—1968) | 1970 |
Галуа | Galois | 232 км | Математик Эварист Галуа (1811—1832) | 1970 |
Герцшпрунг | Hertzsprung | 536 км | Астроном Эйнар Герцшпрунг (1873—1967) | 1970 |
Д’Аламбер | D’Alembert | 234 км | Философ, математик Жан Лерон Д’Аламбер (1717—1783) | 1970 |
Деландр | Deslandres | 227 км | Астроном Анри Александр Деландр (1853—1948) | 1948 |
Жансен | Janssen | 201 км | Астроном Пьер Жюль Сезар Жансен (1824—1907) | 1935 |
Кемпбелл | Campbell | 222 км | Астроном Леон Кэмпбелл (1881—1951) | 1970 |
Кемпбелл | Campbell | 222 км | Астроном Уильям Кэмпбелл (1862—1938) | 1970 |
Клавий | Clavius | 231 км | Математик Христофор Клавий (1537—1612) | 1935 |
Королёв | Korolev | 423 км | Конструктор Сергей Павлович Королёв (1907—1966) | 1970 |
Ландау | Landau | 218 км | Физик Лев Давидович Ландау (1908—1968) | 1970 |
Лейбниц | Leibnitz | 237 км | Философ Готфрид Вильгельм Лейбниц (1646—1716) | 1970 |
Лоренц | Lorentz | 378 км | Физик Хендрик Антон Лоренц (1853—1928) | 1970 |
Менделеев | Mendeleev | 325 км | Химик, физик Дмитрий Иванович Менделеев (1834—1907) | 1961 |
Милн | Milne | 260 км | Математик Эдуард Артур Милн (1896—1950) | 1970 |
Оппенгеймер | Oppenheimer | 201 км | Физик Роберт Оппенгеймер (1904—1967) | 1970 |
Пастер | Pasteur | 233 км | Химик Луи Пастер (1822—1895) | 1961 |
Планк | Planck | 319 км | Физик Макс Планк (1858—1947) | 1970 |
Почобут | Poczobutt | 212 км | Астроном Мартин Почобут-Одляницкий (1728—1810) | 1979 |
Пуанкаре | Poincaré | 346 км | Математик Анри Пуанкаре (1854—1912) | 1970 |
Ферми | Fermi | 241 км | Физик Энрико Ферми (1901—1954) | 1970 |
Харкеби | Harkhebi | 337 км | Астроном Харкеби (IV век до н. э.) | 1979 |
Шварцшильд | Schwarzschild | 211 км | Астроном Карл Шварцшильд (1873—1916) | 1970 |
Шиккард | Schickard | 212 км | Астроном, математик Вильгельм Шиккард (1592—1635) | 1935 |
Шрёдингер | Schrödinger | 316 км | Физик Эрвин Шрёдингер (1887—1961) | 1970 |
Карта высот обратной стороны Луны, в районе Южного полюса. Вот это синее пятно – это и есть бассейн Южный полюс-Эйткен. Попади такой «камешек» в Землю, вымерли бы не только динозавры, а всё до последней бактерии
И все же самый невероятный “кратер” на Луне остается за пределами этого списка и называется бассейн Южный полюс-Эйткен. Дело в том, что назвать этот громадный шрам на Луне кратером – просто не поворачивается язык. Бассейн Южный полюс-Эйткен – это след гигантского столкновения произошедшего примерно 4 миллиарда лет назад.
Его диаметр – 2400 х 2500 км, а глубина составляет 13 км, что делает этот “кратер” одним из крупнейших в Солнечной системе. Трудно даже представить какого размера было тело “чиркнувшее” по Луне под углом примерно в 30 градусов, однако подсчитано, что такой же удар, но нанесенный по поверхности вертикально, буквально вспорол бы внутренности спутника нашей планеты.
Источник
След катастрофы. Загадки обратной стороны Луны
Китайский луноход уже год пытается найти ответы на вопросы, которые интересуют всё человечество: почему невидимая часть поверхности спутника так разительно отличается от видимой и что всё-таки произошло 4 миллиарда лет назад.
Первый снимок обратной стороны Луны («Луна-3», 1959). Фото © Wikipedia
«Уважаемому А.Б. Северному первая фотография обратной стороны Луны, которая не должна была получиться. Королёв. 7 октября 1959 года«.
А.Б. Северный — это советский астрофизик Андрей Борисович Северный. В основном занимался физикой Солнца. Однажды заявил главному конструктору, что солнечная радиация засветит плёнку и не позволит сделать фотографию. Точно такого же мнения был один французский винодел по имени Анри Мэр. Но не из-за излучения, а вообще — мол, impossible, «невозможно». Заключил даже пари на тысячу бутылок истинного шампанского. Впоследствии Сергей Павлович лично раздавал выигрыш сотрудникам ОКБ-1 (ныне РКК «Энергия»), которые разрабатывали космический аппарат «Луна-3». Как вспоминают учёные, по две бутылки.
Справедливости ради надо сказать, что тот первый снимок сделали не на советскую плёнку, а, можно сказать, на трофейную — со сбитых американских шпионских спутников. Она была куда как более выносливая. Ну а что? Шпионить можно, а плёнку брать нельзя?
Конечно, качество довольно плачевное, тем не менее многое вполне можно различить. С правой стороны наверху пятнышко позже назвали Морем Москвы, 275 километров в диаметре. По мнению учёных, след от удара, который заполнился лавой. Внизу, практически прямо под ним — кратер Циолковский, тоже ударный, 180-километровый. Более крупные пятна слева — это уже видимая лунная сторона. Таким образом, уже тогда была видна внушительная разница между двумя половинками.
Как ни странно, именно на «той стороне» находится крупнейший лунный кратер. Его именуют бассейном, хотя по площади он сравним с земным Коралловым морем — без малого пять миллионов квадратных километров. Видите обширную темноватую область внизу? Это он и есть, бассейн Южный полюс — Эйткен. Это условное название, по расположению: внизу полюс, наверху кратер, названный в честь американского астронома Роберта Эйткена. В глубину этот бассейн достигает восьми километров. Кстати, как раз там сейчас китайская станция «Чанъэ-4» с луноходом «Юйту-2».
Но по большому счёту вот, собственно, и всё, что там чисто внешне выделяется на общем фоне: Эйткен, Москва и Циолковский. В остальном всё на первый взгляд сравнительно ровно и однообразно.
Сейчас науке известны и некоторые другие отличия «тёмной» стороны. К примеру, интересно то, что там как минимум на 10 километров толще лунная кора. И вообще очень много возвышенностей. За это обратную сторону Луны даже прозвали горбатой. Самая высокая точка Луны расположена рядом с кратером Королёв, и это символично. 10 километров 786 метров. Считают от условной точки — 1737 километров от центра Луны.
То есть с одной стороны моря, с другой горы. И это при том, что морская фигура, вообще-то, тяжелее. Собственно, центр массы сдвинут от центра геометрического на два километра в нашу сторону.
И, наконец, гравитация Луны. Она везде разная. Где-то посильнее, где-то послабее. Это зависит от плотности вещества в данной области. Есть даже соответствующая лунная карта. Вообще, лучше всего, пожалуй, для сравнения просмотреть вот такое видео от NASA. Слева — топографическая карта, то есть с обозначенными низменностями (синие) и возвышенностями (жёлтые и красные). А с правой стороны — как раз насчёт гравитации. Ярко-красные пятна — это где сравнительно сильное притяжение, тёмно-синие — где наоборот. И то и другое называется гравитационными аномалиями. Всё это показали приборы, установленные на двух зондах лунной орбитальной станции GRAIL.
Обратите внимание: два самых больших красных глаза — это те, которые грустно смотрят на нас по ночам. Вообще, тут у нас с этой стороны имеется заметное количество таких особо притягательных районов. А вот за гранью нашего с вами непосредственного наблюдения как-то больше синих ям. И в то же время есть «румянец» — на местах тех самых возвышенностей.
Своеобразная картина получается. Итого у нас три основных вопроса.
Почему на обратной стороне так мало лунных морей?
На этот счёт имеется, к примеру, исследование японского Института космической науки. Там проанализировали химический состав лунных пород и предположили следующее: давным-давно, четыре с половиной миллиарда лет тому назад, когда Земля и Луна только образовались, они были очень раскалёнными. Всё это потому, что они формировались, «слеплялись» из более мелких тел в результате бесконечных столкновений. Но возникший на орбите «комок» оказался настолько близко, что гравитация Земли поймала его в ловушку под названием приливный захват: совпадение скорости вращения вокруг своей оси и скорости вращения вокруг «хозяйки», в данном случае — Земли. Довольно частое явление в космосе. И что получилось? А получилось то самое весьма одностороннее представление о Луне. И тут надо обязательно учесть, что Земля была чудовищным тлеющим углём. Луна около этого огонька грелась всё время одним боком. А другой остывал. Метеориты при этом падали дождём, не спрашивая, куда лучше. Но с той стороны они ударялись в более твёрдую поверхность, а с нашей тёплой стороны она ещё была несколько более вязкая, и притом на ней происходили извержения вулканов. Упадёт что-нибудь в эту кашу, пробьёт ещё не застывшую кору, и из раскалённой мантии всё вокруг заливает потоком лавы. Вот так и получились моря Дождей, Спокойствия, Кризисов и прочие лунные «водоёмы», по мнению планетологов. Именно на «лицевой» стороне, потому что там было просто-напросто теплее.
Почему по-разному распределены гравитационные аномалии?
Потому что земное притяжение «тянуло» к себе всё, что потяжелее. Так же, как Луна немного тащит за собой наши океаны. Приливы в лунных океанах магмы закончились тем, что на «лице» скопились более тяжёлые породы. Этим и объясняют учёные обилие участков с усиленным притяжением именно на видимой стороне.
Откуда тогда «горб» именно на обратной стороне Луны?
Это вообще эпичная теория. Она гласит, что изначально у нас был не один «протоспутник», вокруг болтался как минимум ещё один сгусток материи. А может быть, и больше. И в какой-то момент он просто врезался в Луну, да с такой силой, что его просто расплющило по внешней стороне. Вот эти горы и есть то, что «налипло» таким вот образом.
Всё это сейчас и пытается прояснить «Чанъэ-4». Чанъэ — это имя богини Луны в китайской мифологии. Скоро станция уже во второй раз встретит на обратной стороне Луны Новый год по китайскому календарю. Прилунилась 3 января 2019 года в кратере фон Кармана, и это тоже символично. Американский учёный венгерского происхождения Теодор фон Карман был учителем Цяня Сюэсэня, основоположника китайской космонавтики. Помощником неподвижной богини стал луноход «Нефритовый заяц» — «Юйту-2».
China National Space Administration releases video recording of entire soft landing on moon’s far side by China’s #ChangE4 probe pic.twitter.com/bbp1ul2gq7
Что они на сегодняшний день нашли. Во-первых, природные минералы оливин и ортопироксен. Это силикатные породы, таких много в земной мантии. Поэтому есть большие подозрения, что «Чанъэ-4» удалось найти кусочки лунной. Теперь их сравнят с образцами грунта, взятыми на видимой стороне.
Во-вторых, тёмный минерал с осколками чёрного стекла. Нечто похожее нашёл в 1972 году американский астронавт Харрисон Шмитт. Считается, что такое вещество образовалось на Луне от удара метеоритов.
И, наконец, во всяком случае один вопрос уж точно решён положительно: можно ли на обратной стороне Луны выращивать картошку, рапс и хлопок? Можно.
Источник