Меню

Вселенная где она заканчивается

С чего начинается космос и где кончается Вселенная

С чего начинается космос и где кончается Вселенная? Как ученые определяют границы важных параметров в космическом пространстве. Все не так просто и зависит от того, что считать космосом, сколько насчитывать Вселенных. Впрочем — ниже все подробно. И интересно.

Атмосфера

«Официальная» граница между атмосферой и космосом – линия Кармана, проходящая на высоте около 100 км. Ее выбрали не только из-за круглого числа: примерно на этой высоте плотность воздуха уже настолько мала, что ни один аппарат не может лететь, поддерживаясь одними лишь аэродинамическими силами. Чтобы создать достаточную подъемную силу, потребуется развить первую космическую скорость. Такому аппарату крылья уже не нужны, поэтому именно на 100-километровой высоте проходит граница между аэронавтикой и астронавтикой.

Но воздушная оболочка планеты на высоте 100 км, конечно, не заканчивается. Внешняя ее часть – экзосфера – простирается вплоть до 10 тыс. км, хотя и состоит уже, в основном, из редких атомов водорода, способных легко покидать ее.

Солнечная система

Наверное, ни для кого не секрет, что пластиковые модели Солнечной системы, к которым мы так привыкли со школы, не показывают истинные расстояния между звездой и ее планетами. Школьная модель сделана так лишь для того, чтобы все планеты поместились на подставке. В действительности, все куда масштабнее.

Итак, центр нашей сис­темы – Солнце – звезда диаметром почти 1,4 млн. километров. Ближайшие к нему планеты – Меркурий, Венера, Земля и Марс – составляют внутреннюю область Солнечной системы. Все они имеют малое количество спутников, состоят из твердых минералов и (за исключением Меркурия) имеют атмосферу. Условно границу внутренней области Солнечной системы можно провести по Поясу астероидов, который находится между орбитами Марса и Юпитера, примерно в 2-3 раза дальше от Солнца, чем Земля.

Это царство гигантских планет и их многочисленных спутников. И первым из них является, конечно, громадный Юпитер, расположенный от Солнца примерно впятеро дальше, чем Земля. За ним следуют Сатурн, Уран и Нептун, расстояние до которого уже умопомрачительно велико – более 4,5 млрд. км. Отсюда до Солнца уже в 30 раз дальше, чем от Земли.

Если сжать Солнечную систему до размеров футбольного поля с Солнцем в качестве ворот, то Меркурий расположится в 2,5 м от крайней линии, Уран – у противоположных ворот, а Нептун – уже где-то на ближайшей парковке.

Самая удаленная галактика, которую астрономы сумели наблюдать с Земли – это z8_GND_5296, расположенная на расстоянии примерно 30 млрд. световых лет. Но самым далеким объектом, который возможно наблюдать в принципе, является реликтовое излучение, сохранившееся практически со времени Большого взрыва.

Ограниченная им сфера наблюдаемой Вселенной включает более 170 млрд. галактик. Представьте: если бы вдруг они превратились в горошины, ими можно было бы заполнить целый стадион «с горкой». Звезд здесь – сотни секстиллионов (тысяч миллиардов). Она охватывает пространство, которое тянется на 46 млрд. световых лет во всех направлениях. Но что лежит за ним – и где Вселенная заканчивается?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история, о которой мы как-нибудь еще расскажем.

Пояс, облако, сфера

Плутон, как известно, утратил статус полноценной планеты, перейдя в семейство карликов. К ним относятся вращающаяся неподалеку от него Эрида, Хаумеа, другие малые планеты и тела пояса Койпера.

Эта область исключительно далека и обширна, она тянется, начиная с 35‑ти расстояний от Земли до Солнца, и до 50-ти. Именно из пояса Койпера во внут­ренние области Солнечной системы прилетают короткопериодические кометы. Если вспомнить наше футбольное поле, то пояс Койпера находился бы в нескольких кварталах от него. Но и здесь до границ Солнечной системы еще далеко.

Облако Оорта пока остается местом гипотетическим: уж очень оно далеко. Однако существует немало косвенных свидетельств того, что где-то там, в 50-100 тыс. раз дальше от Солнца, чем мы, находится обширное скопление ледяных объектов, откуда к нам прилетают долгопериодические кометы. Это расстояние так велико, что составляет уже целый световой год – четверть пути до ближайшей звезды, а в нашей аналогии с футбольным полем – в тысячах километрах от ворот.

Читайте также:  Возможности человека во вселенной

Но гравитационное влияние Солнца, пускай и слабое, простирается еще дальше: внешняя граница облака Оорта – сфера Хилла – находится на расстоянии двух световых лет.

Рисунок, иллюстрирующий предполагаемый вид облака Оорта

Гелиосфера и гелиопауза

Не стоит забывать, что все эти границы являются довольно условными, как та же линия Кармана. За такую условную границу Солнечной системы считают не облако Оорта, а область, в которой давление солнечного ветра уступает межзвездному веществу – край ее гелиосферы. Первые признаки этого наблюдаются на расстоянии примерно в 90 раз большем от Солнца, чем орбита Земли, на так называемой границе ударной волны.

Окончательная остановка солнечного ветра должна происходить в гелиопаузе, уже в 130-ти таких дистанций. В такую даль не добирались еще ни одни зонды, кроме американских Voyager-1 и Voyager-2, запущенных еще в 1970-х годах. Это самые далекие на сегодня искусственно созданные объекты: в прошлом году аппараты пересекли границу ударной волны, и ученые с волнением следят за данными, которые зонды время от времени присылают домой на Землю.

Пузырь в рукаве

Все это – и Земля с нами, и Сатурн с кольцами, и ледяные кометы облака Оорта, и само Солнце – мчится в очень разреженном Местном межзвездном облаке, от влияния которого нас как раз и ограждает солнечный ветер: за пределы границы ударной волны облачные частицы практически не проникают.

На таких расстояниях пример с футбольным полем окончательно теряет удобство, и нам придется ограничиться более научными мерами длины – такими, как световой год. Местное межзвездное облако тянется примерно на 30 световых лет, и через пару десятков тысяч лет мы его покинем, войдя в соседнее (и более обширное) G-облако, где сейчас находятся соседние с нами звезды – Альфа Центавра, Альтаир и другие.

Все эти облака появились в результате нескольких древних взрывов сверхновых, которые образовали Местный пузырь, в котором мы движемся уже минимум последние 5 млрд. лет. Он тянется уже на 300 световых лет и входит в состав рукава Ориона – одного из нескольких рукавов Млечного пути. Хотя он гораздо меньше других рукавов нашей спиральной галактики, его размеры на порядки больше Местного пузыря: более 11 тыс. световых лет в длину и 3,5 тыс. в толщину.

3D представление Местного пузыря (Белый) с примыкающим Местным межзвездным облаком (розовый) и частью Пузыря I (зеленый).

Млечный путь в своей группе

Расстояние от Солнца до центра нашей галактики составляет 26 тыс. световых лет, а диаметр всего Млечного пути достигает 100 тыс. световых лет. Мы с Солнцем остаемся на его периферии, вместе с соседними звездами вращаясь вокруг центра и описывая полный круг примерно за 200 – 240 млн. лет. Удивительно, но когда на Земле царили динозавры, мы были на противоположной стороне галактики!

К диску галактики подходят два мощных рукава – Магелланов поток, включающий газ, перетянутый Млечным путем от двух соседних карликовых галактик (Большого и Малого Магеллановых облаков), и поток Стрельца, куда входят звезды, «оторванные» от другой карликовой соседки. С нашей галактикой связаны и несколько небольших шаровых скоплений, а сама она входит в гравитационно связанную Местную группу галактик, где их насчитывается около полусотни.

Ближайшая к нам галактика – Туманность Андромеды. Она в несколько раз больше Млечного пути и содержит около триллиона звезд, находясь от нас на 2,5 млн. световых лет. Граница же Местной группы находится и вовсе на умопомрачительном удалении: диаметр ее оценивается в мегапарсек – чтобы преодолеть это расстояние, свету понадобится около 3,2 млн. лет.

Но и Местная группа бледнеет на фоне крупномасштабной структуры размерами около 200 млн. световых лет. Это – Местное сверхскопление галактик, куда входит около сотни таких групп и скоплений галактик, а также десятки тысяч отдельных галактик, вытянутых в длинные цепочки – филаменты. Дальше только – границы наблюдаемой Вселенной.

Читайте также:  Вселенная для вас ничего не делает

Вселенная и дальше?

На самом деле, ответа на этот вопрос нет до сих пор: размеры всей Вселенной неизвестны – возможно, она вообще бесконечна. А может быть, за ее границами имеются другие Вселенные, но как они друг с другом соотносятся, что собой представляют – уже слишком туманная история.

Источник

Где кончается и как выглядит край Вселенной?

Пытливые умы ученых-энтузиастов бьются над решением загадочных явлений, придумывают теории, проводят исследования и наблюдения… Пожалуй, одной из самых интересных и многообещающих тем является космос и все, что с ним связано. И чем дальше заглядывает человечество в него, тем интереснее найти ответы на все большее число вопросов.

Мы пытаемся изучить Вселенную настолько, насколько это позволяют современные технологии. Но самые современные телескопы имеют определенные пределы, заглянуть за которые при помощи технических средств просто невозможно. Тогда человек подключает свое воображение и начинает домысливать имеющиеся факты.

Где заканчивается Вселенная? При этом это не философский и не риторический вопрос, а самый настоящий научный. Ответить на него односложно и точно, не имея достаточной базы, нельзя. Можно только, основываясь на уже доказанных теориях и имеющихся фактах, делать определенные выводы и фантазировать…

Происхождение Вселенной, галактик, звезд и даже нашей планеты описано теорией Большого Взрыва. Это событие случилось порядка 13,8 миллиардов лет назад и является моментом рождения Вселенной в том виде, в котором мы её себе представляем. При этом не стоит думать, что до этого Вселенная представляла собой пустоту. Напротив, по мере того, как энергия пространства росла, приближаясь к взрыву, менялось и само пространство.

Как выглядит край Вселенной?

Предполагаемая зона Большого Взрыва — сфера радиусом чуть больше 46 световых лет. Но это граница весьма условна и, конечно, не является границей космоса. Но что находится за ней?

Исследователи полагают, что там находится такой же участок Вселенной, который мы наблюдаем. За исключением деталей, которые можно назвать местными – расположение галактик и звезд, особенности систем.

Исходя из этого становится понятно, что увидеть пресловутый «край Вселенной» невозможно, как нельзя объять необъятное.

Если эта информация оказалась для вас полезной, ставьте лайк и подписывайтесь на наш канал.

Источник

Вселенная. Где она заканчивается

Веками человечество постигает загадки вселенной, которые нам удается открывать по кусочкам, собирая мировой пазл. Одними из несобранных пазлов являются различные теории о конечности или бесконечности космических масштабов. Сегодня я вам расскажу, что же находится на краю нашей вселенной. С вами канал “Все обо всем” .

Начало.

Примерно 14 миллиардов лет назад возникла наша вселенная. В этот момент она начала расширяться с постоянным ускорением , вместе с распространяющимся светом. Космологи пришли к выводу путем математических расчетов, что самые старые фотоны, которые мы можем наблюдать на сегодняшний день, примерно прошли расстояние в 45-47 миллиардов световых лет от Большого Взрыва . Это означает, что наблюдаемая вселенная имеет ширину около 93 миллиардов световых лет.

Скорее всего у вас возникло несколько вопросов. Как может вселенная иметь 93 миллиарда световых лет в диаметре, если ей всего 14 миллиардов лет? Разве свет мог пройти такое расстояние? Очевидным будет ответ “нет”, поскольку свету будет недостаточно собственной скорости для преодоления такого расстояния. Как же это объяснить?

За то время, которое вам потребовалось, чтобы прочитать предыдущий абзац, фотон света, покидающий солнце, прошел около 6 миллионов километров . Свету, который покидает нашу вторую ближайшую звезду — Проксима Центавру, требуется чуть более четырех лет , чтобы достичь Земли, и поэтому мы можем определить это расстояние как четыре световых года. Таким образом, если бы вы посмотрели на Проксима Центавру, вы бы увидели звезду какой она была 4 года назад.

Мы видим все вещи во вселенной такими, какими они были в прошлом , независимо от того, находятся ли они на другой стороне комнаты или на другом конце Галактики. Чтобы развить эту концепцию дальше, ближайшая к нам галактика — Андромеда, которая настолько велика, что вы можете видеть ее миллиарды звезд в ночном небе невооруженным глазом. Однако все эти звезды находятся примерно в 2,5 миллионах световых лет от нас, это означает, что вы видите Андромеду такой, какой она была 2,5 миллиона лет назад.

Читайте также:  Что нового происходит во вселенной

Как добраться до края вселенной?

Согласно специальной теории относительности, близкие друг к другу объекты не могут двигаться относительно друг друга быстрее скорости света , однако такого закона не существует для тех объектов, которые чрезвычайно удалены друг от друга и между ними пространство само расширяется . Простыми словами, пространство между объектами расширяется, заставляя их улетать друг от друга с огромной скоростью.

Эта теория означает, что мы могли бы достичь края наблюдаемой вселенной только в том случае, если бы разработали один из методов, который позволит нам:

  1. Путешествовать быстрее скорости света, что на данный момент невозможно.
  2. Выйти за пределы пространства-времени, используя червоточины или порталы, что на данный момент также невозможно.

Согласно теории космической инфляции, размер всей вселенной в 10^23 раза больше, чем размер наблюдаемой нами вселенной. Это большая часть невидимой из-за света вселенной, который до нас еще не дошел . Теперь перед нами возникают вопросы: что же мы не видим? Что находится за пределами наблюдаемой вселенной? Поскольку мы не можем увидеть или измерить саму вселенную, мы не знаем, что лежит за ее пределами. Однако у нас есть несколько теорий относительно того, что существует за условными границами.

Теория 1. Граница вселенной.

Предположим, что существует невидимая или, например, кирпичная стена. А что же тогда на другой стороне? Если же за этой стеной что-то находится, то стена — это еще не конец вселенной , но в случае если за стеной ничего нет, то стена теряет свой смысл.

Подобная граница может существовать и в пространстве , но у нас нет доказательств ее существования. Если такая граница существует, то она находится далеко за пределами наблюдаемой вселенной.

Теория 2. Мультивселенная или параллельные миры.

Большинство ученых придерживаются теории о бесконечности вселенной. Это означает, что, если данная теория верна, то где-то там, есть еще один человек, который похож на вас . Он лишь слегка отличается всеми возможными способами, он может быть выше вас из-за того, что занимается спортом или вообще умер, поперхнувшись инопланетной картошкой. Возможно ваш двойник прямо сейчас читает эту статью . В одной из своих статей я описал возможность существования параллельных вселенных “Параллельные вселенные. Как их создают” .

Эта идея кажется непостижимой, но как говорится “В бесконечной вселенной возможно все” . Теория о мультивселенных описывает все эти вселенные, находящиеся рядом друг с другом в пустом пространстве, которых ничто не связывает. Каждая из них содержит другую реальность , как пузырь. Некоторые люди полагают, что вы могли бы перейти в другую реальность, пройдя через червоточину или черную дыру.

Теория 3. Вселенная внутри черной дыры.

Черные дыры — это объекты, которые возникают, когда умирающие звезды коллапсируют под собственной массой, образуя невероятно плотную сингулярность. Эти космические объекты искривляют само пространство-время до такой степени, что ничто не может избежать их гравитационного притяжения за пределами горизонта событий. Подробно о черных дырах я рассказал в своей статье “Черные дыры. Монстры вселенной” .

Теории о черных дырах описывают горизонт событий как точку, в которой пространство-время изгибается быстрее скорости света , поэтому свет не может выйти. Ему не хватает собственной скорости, чтобы достичь края. То же самое происходит и с нашей вселенной. Расширение самой вселенной пространства-времени намного быстрее скорости света. Это также может означать, что каждая черная дыра в нашей вселенной может содержать другие вселенные, каждая из этих черных дыр также может содержать вселенную , очень похожую на нашу и скорее всего за пределами нашей вселенной находится гораздо большая вселенная .

Поскольку вселенная расширяется быстрее скорости света , мы никогда не сможем достичь границы или увидеть ее. То, что находится дальше видимой вселенной, может остаться тайной даже после исчезновения человечества.

А какой теории придерживаетесь вы, может быть у вас свой взгляд на мир?

Если вам понравилась статья и вы хотите отблагодарить автора, то не забудьте поставить лайк и подписаться на канал

Источник

Adblock
detector