Меню

Вселенная космос внешний мир

Строение Вселенной. Теории. Интересные факты

Вселенная (лат. universum) — весь мир который нас окружает, бесконечный во времени и пространстве и бесконечно различный по формам вечно движущейся материи. В современной астрономии наблюдаемая нами Вселенная называется Метагалактикой. Ее основными объектами являются звезды. Звездные скопления образуют галактики. Название нашей галактики — Млечный путь — содержит сотни миллиардов звезд, а в нашей Вселенной насчитывается сотни миллиардов галактик.

Галактики

Что такое галактика? – Основная структурная единица во Вселенной, галактика содержит — 150 — 200 миллиардов звезд; звездные системы разного вида, которые состоят из звезд, газовых и пылевых туманностей и межзвездного рассеянного вещества.

Есть одиночные галактики, но обычно они предпочитают располагаться группами. Как правило это 50 галактик, которые занимают в диаметре 6 миллионов световых лет. Группа Млечного Пути насчитывает больше 40 галактик.

Скопления – это область с 50-1000 галактиками, которые могут достигать размеров в 2-10 мегапарсек (диаметр). Интересно заметить, что их скорости невероятно большие, а значит, должны преодолевать гравитацию. Однако они все же держатся вместе.

Обсуждения темной материи появляется на этапе рассмотрения именно галактических скоплений.

Порой группы объединяются, тем самым формируя сверхскопление. Это одни из крупнейших вселенских структур. Наибольший представитель – Великая Стена Слоуна, которая растянулась на 500 миллионов световых лет в длину, 200 миллионов световых лет в ширину и 15 миллионов световых лет в толщину.

Черные дыры

Что такое Черные дыры? – Космические объекты, существование которых предсказано теорией тяготения Эйнштейна (общая теория относительности), как результат эволюционных изменений в крупных массивных звездах на последних стадиях их жизни, завершающихся неограниченным гравитационным сжатием (гравитационный коллапс).

По мнению американского физик Никодима Поплавского, они ведут в другие вселенные. Эйнштейн считал, что упавшее в черную дыру вещество сжимается в сингулярность. Согласно уравнениям ученого, с другой стороны черной дыры находится белая дыра — объект, из которого материя и свет только исторгаются. В паре они образуют кротовую нору, и все, что попадает туда с одной стороны и выходя с другой, образует новый мир. В начале 90-х годов XX века, физик Ли Смолин предложил похожую и в чем-то более странную гипотезу: он также верил во вселенные с той стороны черной дыры, но полагал, что они подчиняются закону наподобие естественного отбора: воспроизводятся и мутируют в ходе эволюции.

Поплавский со своей теорией может прояснить некоторые «темные» места в современной физике: к примеру, откуда могла взяться космологическая сингулярность до Большого взрыва и гамма-всплески на краю нашей Вселенной, или почему Вселенная не сферическая, а, как видно, плоская. Даже скептикам не кажется, что теория Поплавского менее правдоподобна, чем догадка Эйнштейна насчет сингулярности.

Размерность Вселенной

Проблема размерности Вселенной интенсивно рассматривается уже больше 100 лет. Ряд явлений и уникальных экспериментов показывает, что видимый физический мир, может быть, является только подпространством Гиперпространства и образует в нем сложное «геометрическое образование». О том, что наша Вселенная – многомерный объект, писалось в «Тайной Доктрине» и Е. Блаватской.

Еще ученые в Древней Греции для описания физических процессов нашего мира, в частности движения небесных тел, использовали понятия взаимовложенных концентрических сфер. На базе их представлений Аристотель создал теорию так называемых гомоцентрических сфер и дал ей «физическое» обоснование. По его теории, небесные тела считаются жестко прикрепленными к комбинации скрепленных между собой жестких сфер с общим центром, при этом движение от каждой внешней сферы передается внутренним. В последствии эта теория не нашла распространения и была отброшена (удивительно, но эта теория полностью совпадает с предложенным процессом!).

Плотность материального вещества в космическом пространстве в окрестностях Солнца составляет 0,88·10-22 кг/м3. Это больше чем в тысячу миллиардов миллиардов раз меньше плотности воды. Что же может удерживать в таком практически пустом пространстве структуры звезд и галактик на четко обозначенных траекториях?

Распределение материи во Вселенной

В 1970-е годы группа советских и американских ученых под началом академика Зельдовича предприняла попытку построить объемную модель распределения материи во Вселенной. Для этой цели в компьютер были введены данные расстояний до многих тысяч галактик. Результат получился ошеломляющим – галактики, объединенные в метагалактики, располагались в пространстве как бы на гранях некой ячеистой структуры с шагом порядка 100 млн. световых лет. Внутри этих ячеек наблюдалась относительная пустота. Говоря по другому, пространственно-временной континуум оказался структурированным! Это сильно ослабило авторитет теории Большого Взрыва и сторонников фридмановской модели Вселенной.

Вероятно, кроме нашей метагалактики существует еще множество метагалактик, совокупность которых образует систему огромных размеров – так называемую терагалактику («террас» означает «чудовище»); множество терагалактик образует систему еще более колоссальных размеров и т. д.

Еще гипотезы

1908 год – ученый Шарлье (Франция) выдвинул гипотезу, по которой Вселенная представляет из себя последовательность систем все больших размеров. Звезды образуют звездные скопления, объединяющиеся в галактики. В свою очередь галактики образуют скопления галактик, составляющих метагалактику. И таким образом размеры этих огромных звездных систем должны нарастать до бесконечности. Это так называемая дискретная самоподобная космологическая парадигма, подчеркивающая иерархическую организацию систем природы от наименьших наблюдаемых элементарных частиц до наибольших видимых кластеров галактик.

Гипотезы Шарлье в то время не имела особой популярности. Это объясняется тем, что одновременно появилась общая теория относительности, которая поразила умы своей необычной идеей о конечной, но неограниченной Вселенной. Но результаты наблюдений пока не дали убедительных доказательств в пользу выводов теории относительности и конечности Вселенной. Гипотеза бесконечной Вселенной кажется в большей степени правдоподобной. В такой ситуации модель Шарлье приобретает особый интерес.

Действительно, предложенный в монографии подход о пространстве, состоящем из взаимовложенных друг в друга сфер, совпадает как с гипотезой Шарлье, так и с дискретной самоподобной космологической парадигмой. Причем, как отмечает профессор Г. Альвен, гипотеза Шарлье объясняет парадокс Ольберса, по которой, если галактики равномерно распределены во Вселенной, то общая интенсивность их излучения будет необычайно велика, чего на самом деле не наблюдается. Кроме этого, гипотеза Шарлье позволяет избежать еще одной неприятности, связанной с тем, что при однородном распределении вещества во Вселенной необычно нарастает сила тяготения, обусловленная удаленными областями пространства.

Потому, по мнению автора монографии, Вселенную необходимо рассматривать, в соответствии с гипотезой Шарлье как последовательность концентрических сфер все больших размеров. К тому же «вопрос о том, что представляет из себя Вселенная без указания размерности пространства, из которого производится наблюдение, лишен смысла».

Недавно этому появилось научное подтверждение.

Новые гипотезы строения Вселенной

Английский физик Роджер Пенроуз из Оксфорда и его коллега Ваган Гурзадян из Ереванского физического института после тщательного изучения т.н. реликтового излучения – микроволнового фона, который остался после Большого взрыва и сохраняющий информацию о зарождении Вселенной и ее развитии, обнаружили во Вселенной странные неоднородности в виде концентрических кругов.

По мнению ученых, Вселенные возникают чередой – одна за другой. И конец предыдущей становится началом последующей.

«В будущем наша Вселенная возвратиться в то состояние, в котором она была в момент Большого взрыва, – говорит Пенроуз, – станет однородной. И из бесконечно большой снова превратится в бесконечно малую». Кстати, аналогичного мнения придерживаются и астрофизики Пол Стейнхардт из Принстона и Нейл Турок из Кембриджа.

В наше время появляется много новых теорий и гипотез о строении Вселенной, в частности, ученые приходят к выводу, что «наша Вселенная существует внутри Вселенной с бОльшим числом измерений пространства».

Все эти примеры убедительно показывают, что эволюция любой системы от микро- до мега размеров осуществляется развертыванием первичноцелостной монады на составляющие ее координаты материи. Указанное развертывание происходит путем последовательного усложнения системы с троичным переходом от более простой системы к более сложной с образованием трех взаимовложенных миров. Причем каждая следующая ось имеет свое пространство, в котором находится предшествующая ось со своим собственным пространством. К примеру, трехмерный объект, движущийся в пространстве оси у, в то же время совершает движение в пространстве собственной оси развития х.

Таким образом, теория связанных пространств лежит в основе строения человека, Земли и Вселенной. При этом выстраивается иерархическая структура всего пространства, состоящего из вложенных друг в друга иерархических сфер системы пространства. Отсюда становится понятной иерархическая система структур Вселенной.

Читайте также:  Анализ классного часа космос это мы 5 класс

Значит, в Природе существует подобие форм и свойств структур независимо от их пространственного масштаба, а Вселенная определяется как многомерная система в виде иерархии структур.

Имеет ли Вселенная границы

Отсюда также следует ответ на вопрос, есть ли у Вселенной границы. При рассмотрении развития Вселенной согласно предлагаемой теории связанных пространств ответ будет однозначный – у Вселенной, как и всего в нашем мире, есть границы. Только эти границы до такой степени велики, что человек не в состоянии охватить их своим умом. Это совпадает с мнением А. Эйнштейна: по его мнению, Вселенная представляет из себя замкнутую оболочку гиперсферы. Современная наука считает Вселенную многомерной, в которой наша «местная» трехмерная Вселенная является только одним из ее слоев, что также совпадает с теорией связанных пространств.

Эта теория дает возможность также объяснить парадокс, возникший с движением двух космических аппаратов «Пионер-10» и «Пионер-11», которые первые в истории человечества вышли за пределы Солнечной системы. По непонятной причине произошло их торможение, хотя казалось бы, они движутся в безвоздушном пространстве и торможения быть не должно. Исходя из предложенной в монографии гипотезы, выйдя за пределы Солнечной системы космические аппараты оказались в другом пространстве, в котором вектор развития направлен перпендикулярно, потому новое пространство имеет абсолютно другие характеристики по сравнению с предыдущим.

Новая научная парадигма уже возникает на основе тех знаний, которые накоплены человечеством. Многомерное строение Вселенной постепенно становится понятным и объяснимым фактором. Это дает основание утверждать, что найдены общие закономерности в иерархии систем.

Интересные факты о Вселенной

• Самым отдаленные звезды, которые нам видны, выглядят так-же, как выглядели 14 000 000 000 лет назад. Свет от этих звезд доходит до нас сквозь пространства через многие миллиарды лет, причем имеет скорость 300 000 км/сек.

• Таинственные Черные дыры – одни из самых любопытных и малоизученных объектов Вселенной. Они обладают до такой степени громадным притяжением, что выйти за пределы Черный дыры ничто не может, даже свет.

• Во Вселенной имеется гигантский пузырь, в составе которого имеется только газ. Появился он, по вселенским меркам, не так давно, только через два миллиарда лет после Большого Взрыва. Длинной пузырь – 200 миллионов космических лет, а расстояние от Земли до него – 12 миллиардов космических лет.

• Квазары – невероятно яркие объекты (намного ярче Солнца).

• В Солнечной Системе существует тело, похожее на Землю. Это спутник Сатурна, Титан. На его поверхности есть реки, вулканы, моря, а атмосфера имеет высокую плотность. Расстояние от Сатурна до его спутника приблизительно равно расстоянию от Земли до Солнца, соотношение массы тел примерно такое же. Однако разумной жизни на Титане, скорей всего не будет из-за водоемов – состоящих из метана и пропана.

• Невесомость в космосе, плохо влияет на здоровье человека. Одним из самых значительных изменений в организме человека в невесомости являются потеря кальция костями, перемещение жидкостей вверх и ухудшение работы кишечника.

Источник

Космос

Вселенная – это огромнейшее и неисследованное место. Важно понимать, что на изучение конкретной темы или даже вопроса могут уходить десятки, а то и сотни лет. Существует миллион различных направлений, включающих сотни ответвлений. Чтобы вас не ошарашил такой информационный массив, мы предлагаем список тем, которые раскрывают информацию о Вселенной.

Некоторые думают, что Вселенная закончится взрывом. Она будет сокращаться, пока не вернется в исходную точку. За этим последует новый Большой Взрыв и образуется следующая Вселенная. Это основа циклической версии.

Большая часть научного сообщества соглашается с тем, что Вселенная плоская. Это основание базируется на показаниях прибора WMAP (изучение реликтового излучения). Но есть и те, кто не согласен. Не будем забывать, что не так давно все свято верили в плоскость Земли, так что в таких вопросах всегда остаются сомнения.

Конечно, вышеописанные сведения – всего лишь кратчайшее изложение, а вот детали вы узнаете по ссылкам. Каждая статья раскрывает интересующий вопрос и излагает все на понятном языке. Поэтому вам не придется тратить всю жизнь на изучение Вселенной, ведь ученые предоставили вам готовые сведения. Вы сможете больше узнать о Солнечной системе с описанием, характеристикой и качественными фото планет, а также изучить звезды, галактики, экзопланеты, туманности, звездные скопления, пульсары, квазары, черные дыры, созвездия, темную энергию и темную материю. Нужно лишь перейти по заинтересовавшей ссылке.

Строение Вселенной

Воспользуйтесь исключительной возможностью заглянуть в любой уголок Солнечной системы благодаря виртуальному путешествию по спутникам, планетам и яркому Солнцу.

Вселенная – драгоценная шкатулка, наполненная не только удивительнейшими объектами, но и тайнами, над которыми ученые бьются не одну тысячу лет. Присоединяйтесь к величайшим умам человечества и исследуйте окружающий мир во всех масштабах. Зачем ограничиваться единственной планетой, если за ее чертой скрываются черные дыры, отдаленные галактики и квазары!

Так что же такое Вселенная?

Некоторые даже не понимают, насколько сложным и масштабным выглядит вопрос: «Что такое Вселенная?». Можно потратить десятилетия на исследования и рассекретить лишь верхушку айсберга. Возможно, мы говорим не просто об огромном мире, но бесконечном. Поэтому нужно быть энтузиастом своего дела, чтобы погрузиться во все эти загадки, на расшифровку которых может уйти вся жизнь.

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала. Но исследования выдвигают множество теорий и пазл за пазлом собирают картинку.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитер и Сатурн) и звезды.

Геоцентрическая концепция Вселенной Птолемея, созданная Бартоломеу Велью

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все». В современном понятии вмешают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Происхождение Вселенной

Как появился космос и все, что мы знаем? Вселенная берет свое начало 13.8 лет назад с Большого Взрыва. Это не единственное предположение (теория колеблющейся Вселенной или устойчивого состояния), но только ему удается объяснить появление всей материи, физических законов и прочих формирований. Теория также способна рассказать, почему происходит расширение, что такое реликтовое излучение и прочие известные явления.

Теория Большого Взрыва: сингулярность – стартовая точка, с последующим расширением

Ученые начали рассматривать Вселенную с настоящего момента и постепенно возвращались к стартовой точке. Отсюда выплыло предположение, что все началось с бесконечной плотности и исчисляемого времени, запустивших процесс расширения. После первого этапа температурные показатели упали, что помогло сформироваться субатомным частицам, а после них – простые атомы. Позже гигантские облака этих формирований соединились с гравитационными силами, порождая звезды и галактики.

Официальный возраст Вселенной – 13.8 миллиардов лет. Проводя тесты с ускорителями частиц, теоретическими принципами, а также исследуя небесные объекты, ученым удалось воссоздать этапы событий, чтобы вернуть нас с современности в мгновение начала всего.

Но наиболее отдаленный период Вселенной (от 10 43 до 10 11 секунд) все еще вызывает споры. Стоит учитывать, что современные физические законы к тому времени еще не применимы, поэтому никто не может понять, как повела себя Вселенная. Но все же есть сторонники некоторых теорий, которые помогли выделить главные временные промежутки вселенской эволюции: сингулярность, инфляция и охлаждение.

Графическое представление сингулярности Вселенной

Сингулярность (эпоха Планка) – самый ранний период Вселенной. На этом этапе материя была собрана в одной точке бесконечной плоскости, где царствовали экстремальные температурные режимы. В физическом плане доминирует исключительно сила гравитации.

Это время длилось от 0 до 10 43 секунд. Свое второе название эпоха получила в честь Планка, потому что лишь эта обсерватория способна проникнуть в такой промежуток. Вселенная была лишенной устойчивости, потому что вещество было не просто невероятно накаленным, но и сверхплотным. По мере расширения и снижения накаленности, возникли физические законы. С 10 43 до 10 36 секунды запустился температурный переход.

Начали выделяться фундаментальные силы, отвечающие за вселенские механизмы. Первой была гравитация, затем электромагнетизм и первая ядерная сила. С 10 32 и до сегодня длится инфляция. Моделирование демонстрирует, что Вселенная была наполнена однородной энергией с высокой плотностью. Расширение заставило ее терять температуру.

Это началось с 10 37 секунд, когда выделение сил привело к экспоненциальному росту. В этот промежуток стартует барионегез – гипотетическое событие, характеризующееся настолько высокими температурными показателями, что случайные движения частиц осуществлялись на релятивистских скоростях. При столкновениях они создавались и уничтожались. Полагают, что именно из-за этого материя преобладает над антиматерией.

Когда инфляция подошла к концу, пространство представляло собою кварк-глюонную плазменную структуру и прочие элементарные частички. С остыванием материя сливалась и формировала новые структуры. Период охлаждения наступил с уменьшением температуры и плотности. В этом процессе элементарные частички и фундаментальные силы приобрели современный вид.

Есть мнение, что через 10 11 секунд энергия стремительно снизилась. Еще спустя 10 6 секунд кварки и глюоны объединились в барионы, что привело к их переизбытку. Температура больше не достигала необходимой отметки, поэтому у протонов-антипротонов исчезла возможность формировать новые пары. Произошла массовая аннигиляция, оставившая лишь 10 10 изначального их количества. То же самое случилось и для электронов и протонов спустя секунду.

Оставшиеся протоны, электроны и нейтроны оставались статичными, поэтому вселенская плотность обеспечивалась только фотонами и нейтрино. Прошло еще несколько минут, и начался нуклеосинтез.

Температура остановилась на отметке в миллиард кельвинов, а плотность уменьшилась. Поэтому протоны и нейтроны начали сливаться, формируя изотоп водорода (дейтерий) и атомы гелия. Но большая часть протонов все же оставалась «одиночной».

Проходит 379000 лет и электроны, объединенные с ядрами водорода, создали атомы, а отделенное излучение продолжило расширяться. Сейчас мы знаем его как реликтовое (древнейший вселенский свет). По мере расширения, его плотность и энергия терялись. Современная температура – 2.7260 ± 0,0013 К (-270,424 °C) и плотность энергии 0,25 эВ/см 3 . Вы можете посмотреть в любую сторону и повсюду натолкнетесь на остатки этого излучения.

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты. Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Если говорить о деталях процесса, то они зависят количества и разновидности материи. Можно выделить 4 типа темной: холодная, теплая, горячая и барионная. Из них стандартной считается Лямбда-CDM (холодная темная материя). В ней частички перемещаются со скоростью, уступающей скорости света.

Она составляет 23% вселенской материи, а барионная достигает лишь 4.6%. Лямбда дает отсылку к космологической константе, созданной Альбертом Эйнштейном. Она доказывала, что равновесие массы-энергии остается в статике.

Этапы эволюции Вселенной. Нажмите на изображение, чтобы его увеличить

Также связана с темной энергией, послужившей причиной ускорения Вселенной и оставляющей ее структуру однородной. Темную энергию нельзя увидеть напрямую, но ее наличие доказывают многочисленные теории. Считается, что 73% пространства насыщено ею.

Гравитация преобладала над всеми процессами еще на ранних этапах, когда барионное вещество располагалось ближе. Но темная энергия росла и стала доминирующей силой. Это привело к ускорению всех процессов и старту Эпохи Ускорения.

Считают, что это время началось 5 миллиардов лет назад. Этот период описывает в своих уравнениях Эйнштейн, хотя все же настоящая природа темной материи еще не раскрыта. Кроме того, все еще не придумали схем, способных объяснить, что произошло во Вселенной до 10 15 секунд после возникновения всего.

Однако ученые не теряют надежды и экспериментируют с Большим адронным коллайдером, пытаясь воссоздать необходимые условия для Большого Взрыва. Прорыв в этой области поможет понять, как гравитация взаимодействует со слабой и сильной ядерными силами, а также электромагнетизмом.

Структура Вселенной

Хотя старейший свет достигает 13.8 миллиардов световых лет (реликтовое излучение) это не реальные размеры Вселенной. Не будем забывать, что вот уже миллиарды лет пространство расширяется со скоростью выше скорости света. Именно из-за этого нам не удается увидеть край (если он есть).

Полагают, что Вселенная простирается на 91 миллиардов лет (29 миллиардов парсек) в диаметре. А это значит, что в любую сторону от нашей системы нам доступно 46 миллиардов световых лет наблюдения. Однако, мы все еще не знаем истинного размера космического пространства, так что есть вариант, что Вселенная не имеет границы.

Диаграмма Вселенной Лямбда-CBR (от Большого Взрыва к нашей эре).

Вещество распределяется в соотношении со структурами. Если брать галактические пределы, то мы видим планеты, звезды и туманности, чередующиеся с пустыми участками. Даже если увеличивать картинку, то сама суть остается той же. Галактики отделены газовыми и пылевыми участками. На высшем уровне мы видим сверхскопления, формирующиеся в нити, разделенные гигантскими космическими пустотами.

Пространство-время способно существовать в одной из трех конфигураций: положительно-изогнутая, отрицательно-изогнутая и плоская. Подобные виды основываются на 4 измерениях (координаты x, y, z и время) и зависят от космического расширения (повлияет бесконечность или конечность пространства).

Положительно-изогнутая представляет собою четырехмерную сферу. У нее есть конец, но не виден резкий край. Отрицательно-изогнутую еще называют открытой, потому что напоминает седло, у которого нет границ. Нижний рисунок демонстрирует возможные варианты форм Вселенной.

Возможные формы наблюдаемой Вселенной.

В первом случае, расширение Вселенной должно было остановиться из-за огромного количества энергии. Во втором ее слишком мало, чтобы остановить его. А в последнем – критическое число энергии заставило бы расширение остановиться, но через бесконечное время.

Что ждет Вселенную?

Если мы знаем о наличии стартовой точки, то нас должен волновать и финиш. Что же нас ждет? Вечное расширение? Или же возвращение в компактный первородный шарик? Как умрет Вселенная? Эти вопросы возродились, когда велись дискуссии об истинной модели Вселенной. В 1990-х годах научное сообщество определилось с Большим Взрывом, создав два возможных варианта конца.

Познакомьтесь с Большим Сжатием. Вселенная продолжит разрастаться до максимального объема, а затем запустит процесс саморазрушения. Это возможно, если массовая плотность превышает критическую. Если же это значение такое же или ниже, тогда в игру вступает Большое Замораживание. Пространство также продолжит расширяться, пока звезды не смогут поддерживать процесс формирования (израсходуется весь газ). Все уже существующие звезды сгорели бы и трансформировались в белых карликов, а нейтронные – в черные дыры.

Возможные варианты конца Вселенной

Конечно, черные дыры стали бы притягиваться, порождая настоящих гигантских монстров. Средняя температура пространства достигла бы абсолютного нуля, и черные дыры испарились. Энтропия вырастет до такой степени, что запустит сценарий тепловой смерти, когда уже просто невозможно извлечь никакой организованной формы энергии.

Есть также теория фантомных энергий. Она полагает, что галактические скопления, планеты, звезды, ядра и даже материя разорвутся из-за расширения. Такой исход называют Большим разрывом.

История изучения Вселенной

Если говорить в общем, то природу вещей изучают еще с начала времен. Наиболее ранние известия о Вселенной представлены в мифах и передавались устно. По большей части все начинается с момента творения, за которое ответственен Бог или боги.

Астрономия появилась в Древнем Вавилоне. Созвездия и календари фигурируют у них еще 2000 лет до н.э. Более того, им даже удалось создать предсказания на последующую тысячу лет. Греческие и индийские ученые подходили к вопросам Вселенной с философской стороны, сосредотачиваясь не на божественном вмешательстве, а на причине и следствии. Можно вспомнить Фалеса и Анаксимандра, утверждавших, что все появилось из первозданной материи.

Эмпедокл (5-й век до н.э.) стал первым в западном мире, кто предположил, что Вселенная представлена землей, воздухом, водой и огнем. Эта система стала очень популярной среди философов, так как сильно походила на китайскую: металл, дерево, вода, огонь и земля.

Ранняя атомная теория утверждала, что разные материалы состоят из атомов различной формы

Только с Демокритом приходит теория о неразделимых частицах (атомов), из которых и состоит пространство. Ее продолжил философ из Индии по имени Канада, считавший, что свет и тепло являются одним веществом, просто представленным в разных формах. Буддийский философ Дигнана еще более продвинулся, заявив, что вся материя – энергия.

Идея о конечности времени вошла в христианство, иудаизм и ислам. Они верили, что у Вселенной есть начало и конец. Космология продолжала развиваться, и греки выдвигают геоцентрическую модель, которая гласит, что в центре всего стоит Земля, вокруг которой вращаются небесные тела. Детальнее всего это описано в «Альмагесте» Птолемеем. Это станет каноном и продлится до Средневековья.

Сравнение геоцентрической и гелиоцентрической моделей Вселенной

Еще до периода научной революции (16-18 века) появлялись ученые, считавшие, что в основе всего должна стоять гелиоцентрическая модель, где в центре нашей системы расположено Солнце. Среди них фигурируют Аристарх Самосский (310-230 гг. до н.э.) и Селевк (190-150 гг. до н.э.).

Хотя в индийские, персидские и арабские философы развивали идеи Птолемея, находились и революционеры. Например, Ас-Сиджизи или Ариабхата. В 16-м веке появляется Николай Коперник. Его заслуга в том, что он выдвинул концепцию гелиоцентрической модели и обосновал доказательства ее верности. Они основывались на 7 принципах:

  • Небесные тела не совершают вращение вокруг одной точки.
  • Луна вращается вокруг Земли, а все сферы совершают оборот вокруг Солнца, расположенного возле вселенского центра.
  • Дистанция Земля-Солнце – это лишь незначительная часть расстояния от Солнца к другим звездам, поэтому мы не видим параллакс.
  • Звезды пребывают в неподвижном состоянии – кажущееся движение вызвано земным осевым вращением.
  • Земля двигается по орбитальному пути, поэтому кажется, что Солнце мигрирует.
  • У Земли наблюдается больше одного движения.
  • Орбитальный земной проход создает впечатление, что другие планеты движутся в обратном направлении.

Титульный лист «Диалога» (1632)

Более расширенная версия его идей появилась в 1532 году, когда дописал «О вращении небесных сфер». В рукописи фигурировали те же аргументы, но уже подкрепленные научными доводами и примерами. Но автор переживал, что его начнут преследовать со стороны церкви и работа увидела свет лишь в 1542 году после его смерти.

За его идеи взялись ученые 16-17-х веков. Особой заслуги достоин Галилео Галилей. При помощи своего нового изобретение (телескоп) он впервые взглянул на Луну, Солнце и Юпитер, которые не вписывались в геоцентрическую модель, зато соответствовали гелиоцентрической.

В начале 17-го века его записи опубликовали. Интересными были наблюдения кратерной поверхности Луны, а также детализация крупнейших спутников Юпитера и выявление солнечных пятен. Не обошел он стороною и Млечный Путь, который до этого считался туманностью. Галилей увидел, что перед ним множество плотно расположенных звезд.

В 1632 году он выступил за гелиоцентрическую модель в трактате «Диалог о двух системах мира». Его аргументы разбили верования Птолемея и Аристотеля. Дальнейшему укреплению способствовала теория Иоганна Кеплера об эллиптических орбитах планет. Дальше появляется Исаак Ньютон, создавший теорию всемирного тяготения. В трактате 1687 года он описал три закона движения:

  • При наблюдении в инерциальной системе, объект пребывает в покое или двигается с постоянной скоростью, пока на него не повлияет внешняя сила.
  • Векторная сумма внешних сил (F) равняется массе (m) объекта, умноженной на вектор ускорения (a): F = ma.
  • Когда первое тело прикладывает силу ко второму, то второе одновременно прикладывает силу, равную по величине и противоположную по направлению к первому.

Демонстрация дистанции между планетами в Солнечной системе

Все вместе эти принципы описывали связь между объектом, воздействующими силами и движением. Это стало основой для классической механики. С их помощью Ньютон определил массы планет, выравнивание Земли на полюсах и выпуклость на экваторе, а также то, что сила тяжести между Солнцем и Луной создает приливы на Земле.

Следующий прорыв произошел в 1755 году. Иммануил Кант выдвигает идею, что Млечный Путь – огромная звездная коллекция, скрепленная общей гравитацией. Звезды вращаются, формируя сплющенный диск, а Солнечная система расположена внутри него.

В 1785 году Уильям Гершель хотел вычислить форму галактики, но он не догадался, что большая ее часть скрыта за пылью и газом. Пришлось ждать 20-го века и появления Эйнштейна с его Специальной и Общей теориями относительности. Началось с того, что он просто хотел решить законы ньютоновской механики законами электромагнетизма. В 1905 году появилась Специальная теория относительности.

Она утверждала, что скорость света одинакова для всех инерциальных систем координат. Но это вступало в противоречие с предыдущим мнением (свет, проходящий сквозь движущуюся среду, будет следовать вдоль среды, то есть, скорость света равняется сумме скорости прохода сквозь среду и скорость самой среды).

Получается, что эта теория сделала так, что среда вообще оказалась лишней. В 1907-1911х гг. Эйнштейн думал, как применить теорию к гравитационным полям. В итоге, он создал Общую теорию относительности (время относится к наблюдателю и зависит от его расположения в гравитационном поле).

Здесь же появляется принцип эквивалентности – гравитационная масса равняется инерционной массе. Он также предсказал замедление гравитационного времени, существование черных дыр и расширение Вселенной.

В 1915 году появляется радиус Шварцшильда – точка, в которой масса сферы будет так сильно сжата, что скорость ухода с поверхности приравнивается к скорости света (является результатом решения уравнение поля Эйнштейна). В 1931 году Субраманьян Чандрасекар использовал наработки Эйнштейна, чтобы понять, что если масса не вращающегося тела вырожденного электрона выше определенной отметки, то оно само рухнет.

В 1929 году Эдвин Хаббл подтвердил, что Вселенная расширяется. Для этого он замерил красное смещение, в котором галактики отходили от Млечного Пути. Кроме того, сумел продемонстрировать, что чем дальше галактика, тем быстрее скорость отдаления.

В 1931 году Жорж Леметр независимо подтвердил расширение и предположил, что Вселенная началась с маленького объекта (зарождение теории Большого Взрыва). То есть, в определенный момент вся масса была сконцентрирована в одной крошечной точке. Эта идея вызвала бурные споры в 1920-1930-х годах, так как все еще были сторонники статичной Вселенной.

Но споры разрешились в 1965 году, когда обнаружили реликтовое излучение. В это же время появляется предположение, что темная материя является недостающей массой Вселенной. Расширили понимание Вселенной наработки Стивена Хокинга и остальных физиков, подтвердивших вариант Большого Взрыва.

В 1990-х годах все силы тратились на попытку разобраться в темной энергии. Ее появление помогло объяснить, почему пространство продолжает ускоряться. Естественно, эпоха новых телескопов позволила впервые заглянуть в глубины космоса, а значит и в прошлое (определение возраста и плотности материи).

Хаббл Deep Field

Результаты 2016 года показывают, что скорость расширения Вселенной выше, чем полагали ранее, а значит, и постоянная Хаббла увеличилась на 5-9%. Появление телескопа нового поколения Джеймс Уэбб позволит совершить дальнейшие прорывы в изучении Вселенной.

Кажется, что человечество серьезно продвинулось в исследовании мира. Но проблема в том, что мы лишь приоткрыли дверь и с удивлением смотрим на все эти чудеса, многим из которых все еще нет объяснения. Поэтому нас ожидает еще множество открытий и сюрпризов.

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Созвездия
Получив нужные сведения, вы сможете видеть в ночном полотне не просто случайные звезды, а реальных персонажей, за которыми стоят истории, мифы и легенды. Впустите в свою жизнь созвездия, с легкостью находите их в безграничном пространстве и без проблем ориентируйтесь в родной галактике.