Как из нулевой энергии Ничто могла произойти Вселенная? Хроника великого перехода
Поделиться:
Голый факт существования мира в противоположность несуществованию Ничто в постхристианской картине мира был бы менее загадочен, если бы этот мир, по сравнению с другими возможными реальностями, чем-то выделялся на их фоне. Например, космос существует, потому что удовлетворяет абстрактную потребность в добре, простоте или красоте. С точки зрения такого платоновского представления, и человек должен быть здесь, потому что его существование добавляет немного добра (или красоты, или элегантности) в сумму космических возможностей. Любая такая особенность, выделяющая именно этот мир в качестве существующего, придала бы человеческой жизни смысл как необходимому элементу этого мира. У жизни была бы высшая космическая цель: быть как можно лучше этически, или как можно более поэтичным, или как можно более элегантным (вспомним книгу Брайна Грина «Элегантная Вселенная») или что-то еще.
Идея, что Вселенная, содержащая сотни миллиардов галактик, могла появиться из пустоты, выглядит невероятной. Как показал Эйнштейн, любая масса представляет собой замороженную энергию. Однако огромному количеству положительной энергии, запасенной в звездах и галактиках, должна противостоять отрицательная энергия гравитационного притяжения между ними. В «закрытой» Вселенной (той, которая со временем снова сожмется в Большом сжатии) положительная и отрицательная энергии должны точно уравновешивать друг друга – это показывают математические расчеты. Другими словами, полная энергия такой Вселенной равна нулю. Что же касается причины, по которой Вселенная возникла, то это просто квантовая вероятность. Да, это трудно понять классическому разуму.
Возможность создания целой Вселенной из нулевой энергии поражает воображение. Но весь точки зрения квантовой механики Вселенная с нулевой энергией представляет собой интересную — и противоречивую, в духе Георга Гегеля — возможность. Допустим, полная энергия Вселенной точно равна нулю. Тогда, благодаря взаимосвязи в неопределенности между энергией и временем (как диктует принцип Вернера Гейзенберга), неопределенность во времени становится бесконечной. Другими словами, как только такая Вселенная возникнет из пустоты, то сможет существовать вечно.
Квантовая неопределенность запрещает точное определение значений поля и скорости изменения этого значения. Пустота, или вакуум – это состояние, в котором все значения полей постоянно равны нулю, однако принцип неопределенности Гейзенберга говорит, что если мы точно знаем значение поля, то скорость его изменения совершенно случайна: быть равной нулю она никак не может. Таким образом, математическое описание неизменной пустоты несовместимо с квантовой механикой и инфляционной квантовой космологией – точнее, в квантовом мире пустота неустойчива, или же ее попросту не существует.
Если мы не можем вообразить абсолютную пустоту (за исключением разве что сна без сновидений), означает ли это, что всегда должно обязательно существовать Что-то? Необходимо остерегаться склонности принимать недостаток воображения за проникновение в истинную сущность бытия. Во Вселенной не только возможно, но и действительно существует многое из того, что лежит за пределами возможностей нашего воображения. Например, мы не можем представить себе объект, не имеющий цвета, однако фотоны, электроны и атомы бесцветны (они даже не серые). Большинство из нас не могут вообразить искривленным само пространство (объекты могут). Тем не менее теория относительности Эйнштейна утверждает, что мы на самом деле живем в искривленном четырехмерном пространстве-времени, которое нарушает законы евклидовой геометрии.
Не все философы разделяют убеждение, что пустое пространство есть Нечто. Среди них существуют по крайней мере два альтернативных взгляда на его природу. Субстантивный взгляд относится к Ньютону и считает пространство чем-то реальным, что имеет присущую ему геометрию и будет продолжать существовать, даже если все его содержимое исчезнет. Противоположный реляционистский взгляд восходит к сопернику Ньютона Лейбницу и полагает, что пространство не существует само по себе, а есть лишь сплетение взаимосвязей между объектами. С точки зрения Лейбница, пространство неспособно существовать без связываемых им объектов, как не может существовать улыбка Чеширского кота без самого кота.
Если пространство есть настоящая космическая сцена, существующая сама по себе, тогда она сможет пережить и исчезновение ее материального содержимого, даже если все исчезнет. Однако если пространство объективно существует, то должна существовать его геометрическая форма. Она может быть безграничной протяженности, но может быть и ограниченна, при этом не имея границы. Как, например, поверхность футбольного мяча является конечным двухмерным пространством, при этом не имеющим границы. Подобное «замкнутое пространство-время» не противоречит теории относительности Эйнштейна. В самом деле, Стивен Хокинг и другие ученые полагают, что пространство-время Вселенной является конечным и неограниченным, подобно поверхности футбольного мяча, только с большим числом измерений. Тогда несложно мысленно уничтожить пространство-время вместе со всем его содержимым. Просто представьте себе, что мяч сдувается или, скорее, уменьшается в размерах. Перед вашим мысленным взором конечный радиус мяча-вселенной становится все меньше, пока не достигает нуля. Теперь арена пространства-времени исчезла, оставив только абсолютное Ничто, или не оставив ничего.
Если пространство-время представляет собой не реальную сущность, а лишь набор взаимосвязей между объектами, то оно исчезнет вместе с этими объектами и поэтому не является препятствием для существования Ничто. Если же пространство-время есть нечто реальное, имеющее свою собственную структуру и сущность, то его можно «мысленно уничтожить», подобно всей остальной Вселенной.
В физике «Нечто» определяется количеством энергии. Даже материя, как показывает самое знаменитое уравнение Эйнштейна, является лишь застывшей энергией. С точки зрения физики, пространство максимально пусто тогда, когда оно лишено энергии. Допустим, что мы попытались удалить всю энергию из некой области пространства. Другими словами, мы попытались перевести эту область в состояние с минимальной энергией, известное как «вакуумное состояние». В какой-то момент в процессе откачки энергии произойдет событие, противоречащее здравому смыслу: спонтанно возникнет нечто, называемое «поле Хиггса». И от поля Хиггса избавиться нельзя, потому что его вклад в полную энергию той области пространства, которую мы стараемся опустошить, на самом деле отрицателен: поле Хиггса – это Нечто, содержащее меньше энергии, чем Ничто. Существование поля Хиггса сопровождается игрой «виртуальных частиц», которые непрестанно возникают и исчезают. Пространство в вакуумном состоянии оказывается весьма оживленным местом.
Тогда как насчет прямого перехода от мира Нечто к пустоте? Физически это тоже невозможно, потому что, например, уничтожение пары электрон – позитрон нарушает другой фундаментальный закон физики – закон сохранения энергии. Вместо уничтоженной пары по законам физики неизбежно должно будет появиться что-то еще – фотон или другая пара частица – античастица.
Как мы видим, не так-то просто перейти от Нечто к Ничто. Приближение всегда немного не достигает предела, всегда оставляя что-то из сущего, каким бы крохотным оно ни было. Впрочем, что же здесь удивительного? Чтобы успешно перейти от Нечто к Ничто, нужно разгадать загадку бытия в обратную сторону: любой логический переход из одного в другое должен быть двунаправленным. Если нам кажется, что легче вообразить переход от Нечто к Ничто, чем наоборот, то это потому, что начальная и конечная точки заранее известны. Переход от Ничто к Нечто выглядит более таинственным, потому что никогда не знаешь, что получится в результате – что остается верным на космическом уровне.
Большой взрыв – физический переход от Ничто к Нечто – происходит не только невообразимо быстро, но и без каких-либо присущих ему внутренних законов. Как говорит современная физика, в принципе невозможно достоверно предсказать, что может получиться из голой сингулярности. Здесь теория Эйнштейна прерывается и не может предсказать начало Вселенной — только как она развивалась позже. Все начинается с сингулярности — точки, в которой температура, плотность и искривление Вселенной были бесконечны. Из этой точки Вселенная начинает расширяться, и расширение (в соответствии с инфляционной моделью) продолжается до сих пор. Обратив вспять расширение, мы увидим, как содержимое Вселенной сближается, все более сжимаясь в одну точку. В конце концов, в самом начале космической истории, весь мир находится в состоянии бесконечного сжатия и стянут в «сингулярность». Общая теория относительности Эйнштейна утверждает, что форма пространства-времени определяется распределением энергии и материи. И когда энергия и материя бесконечно сжаты, то и само пространство-время тоже сжато – и оно просто исчезает.
Как именно, можно понять, если учесть, что через долю секунды после рождения вся наблюдаемая Вселенная была не больше атома. В таких масштабах классическая физика неприменима: в микромире правят законы квантовой теории. Поэтому космологи (среди них и Стивен Хокинг) стали применять квантовую теорию, которая использовалась только для описания субатомных явлений, ко всей Вселенной в целом. То, что квантовая теория (а за ней и квантовая космология) разрешает, еще более интересно, чем то, что она запрещает. А разрешает она спонтанное возникновение частиц из вакуума. Такой способ создания Нечто из Ничто дал квантовым космологам плодотворную идею: что, если сама Вселенная, по законам квантовой механики, возникла из Ничто? Тогда причина того, что существует Нечто, а не Ничто, состоит в неустойчивости вакуума.
Квантовая космология предлагает способ обойти проблему сингулярности. Классические космологи полагали, что сингулярность, предшествовавшая Большому взрыву – это что-то вроде точки с нулевым объемом. Однако квантовая теория запрещает столь точно определенное состояние, утверждая, что на самом фундаментальном уровне природа обладает неизбежной неопределенностью, квантовой размытостью, которую проще всего показать на примере облачков электронов, поэтому невозможно указать точный момент возникновения Вселенной, ее начальное время.
В этой точке действуют законы квантовой механики: частицы движутся всеми возможными путями, и Вселенная может иметь бесконечное множество предысторий. Общая теория относительности объединяется с квантовой теорией: искривление времени-пространства настолько велико, что все четыре измерения ведут себя одинаково. Иными словами, времени как особого параметра нет. А если времени нет, то нет и возможности говорить о начале Вселенной во времени, что устраняет проблему творения из ничего.
Если Вселенная, по законам инфляционной космологии, может иметь бесконечное множество предысторий, но развивалась именно так, что в результате появились мы, не предполагает ли это цели, направленности, высшего Замысла? Сильный антропный принцип настаивает на неизбежном развитии Вселенной до появлению человека. Слабый останавливается на том, что вполне может существовать бесконечное множество предысторий нашей Вселенной (а также других Вселенных), но мы живем в той, которая допускает существование человека.
Является ли пустота одной из возможных реальностей, в которую бы мог воплотиться мир? И что насчет Абсолютной пустоты, полного отсутствия всего? Некоторые философы утверждают, что пустота невозможно, поскольку эта идея сама себе противоречит. Если они правы, то загадка бытия («Почему существует «Нечто, а не Ничто?») имеет легкое и довольно понятное решение: Нечто существует, раз оно уже существует, и существует потому, что Ничто существовать не может.
Я тоже разделяю изумление фактом существования мира и своего собственного существования – да и тем, что Вселенная как-то произвела те самые мысли о Ничто. Тем самым изумление, которое я испытываю от невероятности своего существования, имеет любопытную противоположность: мне трудно вообразить полное отсутствие моего «я». Почему же так трудно представить мир, в котором меня нет, в котором я никогда не появился на свет?
Источник
Вселенная вместо ничто
Как Андрей Сахаров отвечал на вопрос о причине существования материи
Красивый вопрос о том, почему вообще все существует, будто бы относится к разряду философских — но это, в определенном смысле, дело формулировок. Физики же вместо того, чтобы вопрошать о том, «почему вообще есть сущее, а не наоборот, ничто», предпочитают использовать словосочетание «барионная асимметрия», за которым стоит заметное преобладание вещества над антивеществом в видимой части Вселенной. Одна из ключевых статей, посвященная этому вопросу, принадлежит Андрею Сахарову, имя которого обычно ассоциируется совсем с другими вещами: правозащитной деятельностью и созданием водородной бомбы. В этом материале мы попробуем объяснить, в чем была суть этой работы и почему ее считают значимой, а какие последствия она имела для космологии и физики элементарных частиц, мы попросили прокомментировать физика Валерия Рубакова.
Андрей Сахаров в 1989 году
RIA Novosti archive, image #25981 / Vladimir Fedorenko / CC-BY-SA 3.0
Второй вопрос — о какой асимметрии мы тут говорим. Барион, как и любая квантовая частица, описывается набором числовых квантовых параметров, которые полностью характеризуют его физические свойства. В данном контексте наиболее важный из них — это так называемый барионный заряд — квантовая характеристика, которая определяется через число кварков и антикварков в системе. Именно знак барионного заряда кварков (плюс) отличает вещество от антивещества (у него знак барионного заряда — минус). Если бы частиц с противоположными знаками заряда во Вселенной было поровну, то вещества было бы ровно столько же, сколько и антивещества. В этом случае они бы проаннигилировали, и Вселенная действительно превратилась бы в ничто. Но почему-то Вселенная развивалась так, что вещества в ней сейчас значительно больше, чем антивещества (подробнее о нем вы можете прочитать в нашем материале «C точностью до наоборот»).
Атомы водорода (на переднем плане) и антиводорода (на заднем плане). Как видно, водород состоит из протона и электрона, а антиводород — из антипротона и позитрона
Если мы проведем над частицей операцию зарядового сопряжения (то есть поменяем знак заряда на противоположный), превратив тем самым вещество в антивещество, и она после этого будет подчиняться тем же законам физики, что и до преобразования, то ее в таком случае называют C-симметричной. Такое свойство характерно для электромагнитного и сильного взаимодействия элементарных частиц. Аналогичные преобразования можно провести не только с зарядом, но и с другими категориями: если физические законы, действующие на систему, продолжат выполняться после зеркальной инверсии пространства, это мы будем называть P-симметрией (или симметрией относительно «четности» системы), а такое же сохранение законов после обращения времени вспять — Т-симметрией.
При этом зеркалить таким образом физическую систему можно и относительно нескольких категорий одновременно: тогда мы будем говорить о CP-, TP- или CPT-симметрии. Выполнение симметрии приводит к инвариантности физической системы относительно выбранных категорий (этот термин нам тоже понадобится позже).
Кроме барионов, нам для разговора о том, почему материя в нашей Вселенной вообще существует, понадобится еще несколько элементарных частиц: лептоны (электрически заряженные легкие частицы с полуцелым спином, которые не участвуют в сильном взаимодействии, — это отрицательно заряженные электроны и менее стабильные мюоны, — а также нейтрино — незаряженные легкие частицы, участвующие в слабом взаимодействии) и их античастицы.
Элементарные частицы и их взаимодействия в рамках Стандартной модели. В черных овалах — частицы, синие кривые — взаимодействия между ними. По углам расположены частицы материи (лептоны и кварки), между ними — переносчики взаимодействия: фотон (электромагнитное), глюон (сильное), W- и Z-бозоны (слабое) и бозон Хиггса
Eric Drexler / Wikimedia commons / CC0
Почему Вселенная
В 1964 году Джеймс Уотсон Кронин и Вал Логсдон Фитч показали, что в мироздании действительно есть «трещинка для сущего», и в некоторых случаях слабого взаимодействия CP-инвариантность может нарушаться (в 1980 году за это открытие им присудили Нобелевскую премию). Поскольку для электромагнитного и сильного взаимодействий CP-инвариантность выполняется всегда, то почему она может не выполняться для слабого, было непонятно. Не до конца понятными были и последствия этого нарушения для космологических теорий и теорий взаимодействия элементарных частиц.
Фейнмановская диаграмма, демонстрирующая превращение антикаон в каон. Кварки в каонах при этом обмениваются двумя W-бозонами. Этот процесс наблюдали Кронин и Фитч
Maksim, NikNaks / Wikimedia commons / CC BY-SA 3.0
Именно работа Сахарова стала первой, где вопрос о причинах возникновения этой асимметрии был поставлен явным образом.
Валерий Рубаков: «Вопрос о происхождении барионной асимметрии — очень фундаментальный. Во Вселенной не так много характеристик и свойств такого класса. Фактически происхождение барионной асимметрии и механизм образования структур во Вселенной (галактик и их скоплений) были в середине 1960-х годов двумя главными вопросами. Сейчас к ним добавилась темная материя и темная энергия — и это, наверно, самый сложный вопрос. У Вселенной вообще не так много фундаментальных характеристик, которые требуют анализа и конкретных объяснений.
Кроме того, это была одна из первых статей, где начала становиться понятной связь физики микромира и космологии. Что, конечно, очень нетривиально: фактически эта идея требует, чтобы были увязаны микроскопические механизмы физики элементарных частиц и макроскопические свойства Вселенной. Это, конечно, в результате оказалось очень плодотворным».
Одна из сложностей при объяснении этого явления — фантастическая устойчивость протонов. По современным экспериментальным данным, время жизни протона в нынешних условиях составляет не меньше, чем 10 33 лет — это хотя и не вечность, но на много порядков больше возраста самой Вселенной.
Стабильность протона как раз и объясняется сохранением барионного заряда (или, что то же самое, барионного числа) во всех наблюдаемых физических процессах. Согласно современным представлениям, это число остается постоянным для всех типов взаимодействий, а чтобы барионная асимметрия возникла — оно должно перестать сохраняться. Какие условия и причины для этого нужны — абсолютно непонятно.
Условия Сахарова
Частицы, из которых сейчас состоят атомные ядра, фантастически стабильны — и значит, асимметрия между веществом и антивеществом не могла медленно развиваться при взрослении Вселенной. То есть она либо заложена в каких-то фундаментальных принципах, по которым Вселенная построена, либо стала результатом какого-то процесса в условиях сильной неустойчивости в «младенчестве» Вселенной, когда энергии были совсем другие.
Сахаров выбрал сочетание этих двух идей и описал сценарий, в котором барионная асимметрия рождается в условиях очень ранней Вселенной из-за нарушения CP-симметрии. Очень высокие температура и плотность частиц принципиальным образом изменили механизм взаимодействия барионов между собой и фактически включили в игру какие-то новые взаимодействия.
Валерий Рубаков: «В статье Сахарова есть две части. Одна – это общие необходимые условия образования барионной асимметрии. Он их очень сжато сформулировал, но они абсолютно правильные. Практически все последующие работы в этом направлении, так или иначе, основывались на этих положениях.
Вторая часть менее актуальна. Это попытки построить конкретные механизмы физики частиц, которые бы приводили к генерации барионной асимметрии. Хотя идеи, которые там есть, тоже, в общем, в той или иной форме эксплуатируются. Например, сейчас немножечко ушли от максимонов, про которые писал Сахаров. Это не значит, что это неправильно. Просто сейчас есть более понятные и, кажется, более обоснованные механизмы. Но поскольку ответ на вопросы, как это всё произошло и как возникла барионная асимметрия, неизвестен, то говорить о том, какие теории более правдоподобны, а какие менее – это вопрос вкуса».
В первой части статьи ученый сформулировал три базовых правила, выполнение которых необходимо, чтобы материи во Вселенной оказалось больше, чем антиматерии. Сегодня их называют условиями Сахарова.
Условие #1. Барионное число в этой Вселенной должно изменяться.
Сахаров предположил, что «вечные» в наше время протоны могли распадаться при расширении горячей Вселенной, которое происходило нестационарно (то есть его динамика со временем менялась). В таких условиях кварки в составе протонов могли превращаться в мюоны — ученый счел, что это происходило по механизму трехбозонного взаимодействия (то есть кроме кварка и мюона в реакции должен участвовать еще один бозон) — соответственно, барионное число во Вселенной менялось.
Схема трехчастичного распада протона на кварки с превращением бозона в мюон из статьи Сахарова. Сегодня этот сценарий считается скорее экзотическим
А. Д. Сахаров / Письма в ЖЭТФ, 1967
Условие #2. C- и CP-инвариантность в этой Вселенной должны нарушаться.
Чтобы возникла барионная асимметрия, необходимо то или иное нарушение инвариантности относительно инверсии заряда элементарных частиц. Про нарушение P-симметрии (относительно четности) для слабого взаимодействия было известно довольно давно, но этот эффект пространственный и решить проблему, связанную с барионным зарядом, не очень помогает. А вот открытое Кронином и Фитчем нарушение CP-инвариантности вводит в игру и заряд. Еще одним подтверждением возможности такого нарушения для Сахарова стала теоретическая работа Сусумо Окубо 1958 года, в которой описывался распад сигма-гиперонов.
И именно нарушение CP-инвариантности приводит к возникновению C-асимметрии, которую ученый даже оценил качественно, предположив, что для нейтрино она должна составлять от 10 -10 до 10 -8 .
Условие #3. Во Вселенной во время генерации барионной асимметрии не должно быть теплового равновесия.
Третье условие Сахарова — отсутствие теплового равновесия на сверхплотной стадии расширения горячей Вселенной (то есть присутствие нестационарных процессов). К нему приводит распад тяжелых частиц, и в результате нестационарность становится причиной движения в сторону асимметрии, а не наоборот, как было бы в условиях стационарности.
Эти условия оказались сформулированы очень точно: затем они подтвердились многочисленными теоретическими работами. И заметно повлияли на дальнейшее развитие как космологических теорий, так и теорий взаимодействия элементарных частиц.
Полвека спустя
В условиях обычной физики — той, которую мы наблюдаем во Вселенной сейчас, процессы с нарушением барионного числа просто невозможны. Оно сохраняется всегда с очень высокой точностью. А условия, которые, согласно теоретическим предсказаниям, могли бы привести к нарушению этого правила, пока реализовать на Земле не удается. Для экспериментальной проверки этих гипотез нужны такие энергии столкновения частиц, такие массы этих частиц и такие температуры, которые намного выше доступных сейчас на современных коллайдерах.
Валерий Рубаков: «Уже существенно позже, в 85-ом году, мы с моими коллегами, Вадимом Кузьминым и Михаилом Шапошниковым, поняли, что при высоких температурах в Стандартной модели прямо происходит нарушение барионного числа совместно с нарушением лептонных чисел. Это открыло возможность построения таких механизмов генерации барионной асимметрии, которые происходят за счет нарушения лептонных чисел и частичной переработки в рамках Стандартной модели этих лептонных чисел в барионное число при высоких температурах. Причем тут речь идет не о безумно высоких температурах, порядка сотни гигаэлектронвольт. Поэтому по-прежнему остается надежда, что или существующие коллайдеры или, может быть, коллайдеры следующего поколения все-таки позволят выяснить, какой же был механизм генерации барионной асимметрии. Сейчас достаточно активно обсуждается возможность обнаружения на коллайдерах (или вообще в ускорительных экспериментах) новых частиц, которые ответственны за генерацию барионной асимметрии.
Ещё тут есть очень интересная ниточка к нейтринным осцилляциям, к нарушению лептонных чисел в нейтринном секторе и взаимопревращению нейтрино одного типа в другой. Эти процессы с нейтринными осцилляциями происходят с нарушением лептонных чисел, а нарушение лептонных чисел (если оно происходило достаточно интенсивно в ранней Вселенной) могло приводить и к генерации лептонной асимметрии. А дальше уже — известен механизм, который перерабатывает лептонную асимметрию в барионную. Не исключено, что первые косвенные результаты, которые свидетельствуют о том, как происходила генерация барионной асимметрии, связаны с обнаружением нейтринных осцилляций. Вот такой вот неожиданный поворот».
Источник