Вселенная нестационарна потому что гравитация стремится собрать все вещество
Система Мира — это представления о расположении в пространстве и движении Земли, Солнца, Луны, звезд.
Очень простая и наглядная система мира в древнем Вавилоне:
(А Вы знаете что-нибудь о представлениях, например, древних китайцев?)
Шли годы, и мы теперь можем следить за гениальными догадками (умозаключениями) гениальных людей.
Древнегреческий ученый Клавдий Птолемей (ок.90-ок.160 гг.) в своем труде “Альмагест” предложил геоцентрическую систему Мира:
Однако трудно описать движение планет, приходится вводить много дополнительных предположений.
. И поплыл Колумб в Индию, а открыл Америку.
(Детский вопросик — Интересно, Колумб попал не туда из-за того, что неправильно ориентировался по звездам?)
Николай Коперник (1473-1543 гг.) провозгласил в своей книге “Об обращении небесных сфер” гелиоцентрическую систему мира.
Огромный прорыв в описании Мира, но … звезды по прежнему «прибиты гвоздями» к небосводу.
Прошло еще почти 150 лет, пока не пришел еще один гений – Ньютон.
Вселенная Ньютона
Сэр Исаак Ньютон (1643-1727 гг.) в своем труде “Математические начала натуральной философии” (1687 г.) заложил основы классической физики:
- 1. Существует абсолютное пространство, которое однородно, изотропно и имеет бесконечную протяженность.
- 2. Существует абсолютное (истинное и математическое) время. Время бесконечно и имеет одно измерение.
В основе механики Ньютона лежат три аксиомы (три закона):
- 1. Первый закон — закон инерции: всякое тело, на которое не действует внешняя сила, сохраняет по инерции (вследствие наличия инертной массы) состояние покоя или равномерного прямолинейного движения.
- 2. Второй закон — закон движения
F=m и a F — вынуждающая сила, a — ускорение, m и — инерциальная масса.
- 3. Третий закон — закон действия и противодействия: всякому действию соответствует равное по величине и противоположно направленное противодействие.
(Кстати говоря, а что такое механика?)
Решил Ньютон отдохнуть после трудов праведных в саду, и … получилось, что в конце 17 века он установил закон тяготения:
между всеми телами на Земле действуют силы притяжения — гравитационные силы.
F гр = g * m гр * M гр / r 2
g — гравитационная постоянная.
(Детский вопросик — Интересно, а откуда Ньютон узнал о «своих», законах, он что, их сам придумал?)
Обратим внимание, что в уравнениях Ньютона появилось две разных массы: инертная масса m и и гравитационная масса m гр .
Различны ли эти массы?
Сейчас доказано, что m гр =m и с точностью до 10 -12 .
(Детский вопросик: Луна притягивается к Земле, почему до сих пор она не упала на Землю?
Детский вопросик: Почему камень падает на Землю, а не Земля на камень?).
Разобравшись с тем, что происходит на Земле, Ньютон попытался описать самую большую физическую систему — Вселенную .
Для этого Ньютон сделал гениальное предположение –
пусть законы, установленные на Земле, будут действовать и во всей Вселенной,
т.е. эти законы будут мировыми законами .
В конце 17 века считалось, что Вселенная — шар, и вещество (звезды) во Вселенной однородно распределено по объему шара.
Между частицами — звездами действуют, как считал Ньютон, только гравитационные силы, т.е. силы притяжения, поэтому шар должен сжаться в точку, т.е. произойти гравитационный коллапс
Но если Вселенная — бесконечна, то произвольная точка в бесконечной Вселенной испытывает одинаковое притяжение в любом направлении и поэтому остается на месте.
Ньютон делает гениальный вывод:
Вселенная является бесконечной и стационарной (т.е. неизменной во времени) ,
но сам Ньютон понимал, что такая Вселенная очень неустойчива.
Что же делать? Ньютон не успел больше ничего совершить, и Мир ждал появления следующего гения – Эйнштейна.
Вселенная Эйнштейна
Эйнштейн рассмотрел Вселенную, которая также была стационарной, изотропной и однородной (как у Ньютона). Чтобы уравновесить силы притяжения, ввел новую силу — силу отталкивания.
Теперь Вещество во Вселенной удерживается двумя силами — притяжения и отталкивания.
Строгое математическое решение сформулированной задачи показало нетривиальный результат:
Вселенная может быть стационарной, но если только она (Вселенная) имеет конечные размеры, но неограниченна.
Как же тело может быть конечным, но не иметь границ?
Возьмите сферу — площадь ее конечна, но как определить границу сферы? Ее нет. По аналогии можно представить себе, что существует некое четырехмерное пространство (какой-то гипершар), где наша Вселенная служит трехмерной границей гипершара. Если на Земле вы, двигаясь по меридиану из любой точки, вернетесь в ту же точку, то и во Вселенной Эйнштейна, двигаясь “по прямой”, вы окажетесь в исходной точке.
Но что это за таинственные силы отталкивания и нужны ли они?
Что знали ученые о Вселенной в 20-х годах XX века? Результаты наблюдательной астрономии позволили ученым утверждать, что Вселенная в целом однородна и изотропна.
Но если это так, то почему ночью темно, а не светло как днем?
Действительно, рассмотрим, сколько света поступает от звезд.
Разделим Вселенную на отдельные слои.
Количество звезд N в слое : N
4 * p * R 2
Но светимость: Q
1 / R 2
Два слоя на расстоянии R 1 и R 2 от Земли.
В первом слое: N 1 и общая светимость Q 1
N 1 / R 1 2 .
Светимость второго слоя Q 2
N 2 / R 2 2 .
Ясно, что Q 1 = Q 2 .
Поскольку слоев бесконечно много, то и света должно быть бесконечно много. Ночью должно быть светло, как днем — вот о чем говорит парадокс Ольберса.
Что же делать? Опять ждать гения? Но может быть, стоит и самим чуточку подумать?
Исходные посылки: Вселенная бесконечна, изотропна, однородна и постоянна.
Изотропность и однородность установлены точно и здесь ничего изменить нельзя.
Делаем вывод, что либо Вселенная не бесконечна, либо Вселенная изменяется со временем.
И здесь на помощь приходит еще один гений — американский астроном Хаббл
В 1929 г. Хаббл измерял скорости движения галактик. Для этого он определял так называемое “красное смещение” — наблюдаемый в спектрах излучения галактик сдвиг спектральных линий, присущих определенным химическим элементам, в сторону более длинных волн по сравнению с их нормальными.
И он получил следующую картину:
Скорость (v) удаления галактик в зависимости от их расстояния (R) от нашей Галактики описывается простым выражением (Э. Хаббл, 1929)
v=HR
Постоянная Н называется постоянной Хаббла и ее современное значение составляет около 70 км/с Мпк.
Наблюдаемое Хабблом красное смещение означает, что объект удаляется от наблюдателя.
Итак, существующая Вселенная нестационарна, галактики убегают от нас.
Ура (ликуют все жители Земли), значит, Земля (точнее, наша галактика) является центром Вселенной?
Ликование было недолгим, потому что опять вмешивается наш разум и приводит простую аналогию с воздушным шариком.
Будем надувать воздушный шарик с нарисованными на нем точками 1, 2, 3.
Происходит “разбегание” точек 1, 2 и 3 по поверхности шара при увеличении его размеров.
Так и во Вселенной. Все галактики разбегаются друг от друга, и конечно, возникает вопрос, почему?
На помощь снова приходит гениальный ученый – теперь это русский ученый Фридман
В начале 20-х годов он предложил модель нестационарной Вселенной.
Если сейчас галактики разбегаются, то вчера они были ближе, а позавчера еще ближе друг к другу, а значит был момент времени t=0, когда все началось из какой-то точки. Обратите внимание, что здесь самое главное – это временная шкала, мы приходим к выводу о моменте рождения Вселенной.
Конечно, мы получаем также свидетельство, что Вселенная была в точке (в математическом смысле, а вспомните, что есть точка в математике?), но реально никакой точки не было.
Но почему галактики разбегаются. Предположим, что в начальный момент времени уже были галактики и занимали какое-то пространство.
Предположим также, что в начальный момент галактики были в покое, т.е. их скорость v=0. Тогда галактики будут притягиваются друг к другу и Вселенная будет сжиматься.
Но если в начальный момент скорости были большими и направлены таким образом, что галактики удалялись друг от друга, то мы получим, что и в настоящее время галактики удаляются друг от друга (правда, с меньшей скоростью, поскольку тяготение «тормозит» их движение).
Время рождения Вселенной грубо можно оценить из закона Хаббла: зная расстояние между галактиками и скорость их расхождения, можно из S=vt найти время t. После введения поправок на замедление расширения получаем время рождения Вселенной — примерно 15 млрд лет тому назад.
Итак, был начальный момент, когда произошел «Большой Взрыв»
(Детский вопросик – Что, где и когда взорвалось?)
Иными словами, после «взрыва» частицы получают огромную начальную скорость и начинают разлетаться во все стороны. Если силы притяжения, которые стремятся собрать частицы воедино, малы, то частицы все время будут разлетаться. Однако если силы притяжения велики, то через некоторое время они изменят знак скорости движения частиц на противоположный и частицы начнут сближаться. Ясно, что гравитационные силы зависят от плотности частиц в объеме Вселенной — чем больше плотность, тем больше силы F тяг . Из приведенных условий ясно, что сценарий развития Вселенной зависит от плотности вещества в современную эпоху, т.е. существует критическая величина плотности r Вселенной. Открытая модель соответствует r r кр . Обратное неравенство справедливо для закрытой модели. По современным данным, критическая плотность вещества составляет r кр = 5х10 -30 г/см 3 . Примерно такое же значение дают оценки плотности вещества во Вселенной.
Изменение размера R Вселенной с течением времени t для Вселенной с разной плотностью.
Строгое решение задачи об эволюции (развитии) Вселенной показывает:
Неужели все так просто и ясно? Что же еще ученым надо, и что они делали после этого еще 70 лет?
Однако в последнее время появились новые астрономические данные, проливающие свет на современное состояние Вселенной и на ее будущее. Подробнее см. тему 5.
Спасибо, что осилили сложную тему.
Мне кажется, что теперь вы в состоянии создать такую фигуру:
Источник
Конспект урока на тему «Конечность и бесконечность Вселенной. Расширяющаяся Вселенная»
Тема урока: Конечность и бесконечность Вселенной. Расширяющаяся Вселенная
Цель урока: изучить строение и эволюцию Вселенной как целого
Определить такие понятия темы, как космология, Вселенная, Метагалактика;
Определить содержание космологического принципа, фотометрического парадокса, гравитационного парадокса;
Установить связь закона всемирного тяготения с представлениями о конечности и бесконечности Вселенной;
Описать космологическую модель «горячей Вселенной».
Оборудование к уроку, необходимое дополнительные материалы: презентация
Оборудование: воздушный шарик для иллюстрации расширения Вселенной, презентация
Актуализация опорных знаний
1.1. Прочитайте стихотворение Самуила Маршака и проанализируйте его строки.
Самуил Маршак
Только ночью видишь ты вселенную.
Только ночью видишь ты вселенную.
Тишина и темнота нужна,
Чтоб на эту встречу сокровенную,
Не закрыв лица, пришла она.
Вопросы для анализа стихотворения:
о чем размышлял человек, написавший эти строки? (почему только ночью можно увидеть Вселенную? Как может Вселенная «закрыть свое лицо»?)
назовите способы для лучшего рассмотрения лика Вселенной
что возникает перед твоими глазами, когда ты читаешь эти строки?
слышится ли тебе музыка, когда ты читаешь эти строки? Какая музыка?
в какой ситуации ты мог захотеть прочитать эти строки?
1.2. Составь свою Вселенную, используя свои представления и предложенные свойства
1.3. Определите основные свойства Вселенной
2. Организация усвоения новых знаний
2.1. Прочитайте текс описывающий эффект Доплера и ответьте на вопросы.
Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.
Доплера для звуковых волн
Эффект Доплера для световых волн (или красное смещение)
Движение машины с включенной сиреной
Движение далеких Галактик
Когда машина не движется относительно наблюдателя , тогда он слышит именно тот тон , который издаёт сирена . Но если машина будет приближаться к наблюдателю , то частота звуковых волн увеличится , и наблюдатель услышит более высокий тон , чем на самом деле издаёт сирена . А когда машина проедет дальше и будет уже отдаляться , а не приближаться , то наблюдатель услышит более низкий тон ,
Красное смещение для галактик было обнаружено американским астрономом В. Слайфером в 1912—1914; в 1929 Э. Хаббл открыл, что Красное смещение для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). В результате красного смещения происходит уменьшении энергии приходящих фотонов.
Вопросы для обсуждения:
Можно ли «слышать» и «видеть» эффект Доплера? Приведите примеры.
Почему линии в спектрах далеких галактик смещены в красную сторону?
Почему красное смещение, определенное по большому числу галактик, растет ступенчато с расстоянием?
Почему несколько ближайших галактик имеет фиолетовое смещение?
Акустический эффект Доплера можно слышать, как изменение тона звука свистка проносящегося мимо платформы поезда. «Видеть» эффект можно, хотя бы в ванне или пруду. Периодически погружая палец в воду, чтобы на поверхности образовались волны, равномерно перемещайте его в одном направлении. Следуя друг за другом, гребни волн в направлении движения пальца будут сгущаться, т. е. длина волны станет меньше обычной, в направлении назад — больше.
Это явление получило название «метагалактическое красное смещение». Оно интерпретируется согласно принципу Доплера как увеличение средних расстояний между галактиками. Причиной этого является, по современным воззрениям, огромный взрыв, происшедший 10—20 млрд лет назад и приведший к разбеганию галактик.
Этот наблюдательный факт доказывает ячеистую структуру Метагалактики.
Пекулярные скорости этих галактик больше скоростей разбегания галактик.
2.2. Сформулируйте ответ на вопрос после рассмотрения содержания фотометрического и гравитационного парадоксов (работа производится в группах; каждая группа изучает один из парадоксов, в дальнейшем один из представителей группы пересказывает его суть, решение, а так же отвечает на поставленные вопросы).
Фотометрический парадокс (подробно изложен немецким ученым Генрихом Ольбресом в 1826 году): в бесконечной Вселенной, заполненной звездами в хаотичном порядке, наблюдатель с Земли должен постоянно натыкаться взглядом на поверхность звезды (яркость объекта не зависит от расстояния до него). В действительности этого нет.
Для объяснения парадокса Ольберс предположил, что в межзвездном пространстве имеется рассеянное вещество, которое поглощает свет далеких звезд.
Вопросы для обсуждения:
Поясните невозможность объяснения фотометрического парадокса наличием во Вселенной темной поглощающей материи.
Можно ли объяснить парадокс на основе существования красного смещения? Если да, то как?
Поясните истинность высказывания советского космолога А.Л. Зельманова, утверждавшего, что сжатие Вселенной будет происходить без свидетелей.
Хотя спустя столетие межзвездное поглощение света действительно было обнаружено, оно не смогло разрешить фотометрический парадокс, т.к. сами пылинки в безграничной и вечной Вселенной, однородно заполненной звездами, нагрелись бы до температуры звездной поверхности и светились бы как звезды.
Фотометрический парадокс существует только в однородной и изотропной статической Вселенной. В теории расширяющейся Вселенной, разработанной Александром Фридманом и Эдвином Хабблом, фотометрического парадокса не возникает из-за существования красного смещения. В результате красного смещения происходит уменьшении энергии приходящих фотонов.
В результате фиолетового смещения происходит увеличении энергии приходящих фотонов и как следствие тепловая смерть человечества.
Гравитационный парадокс (сформулирован в 1895г немецким астрономом Х. Зеелигером): пользуясь законом Ньютона, в бесконечной Вселенной, равномерно заполненной веществом, нельзя однозначно рассчитать силу гравитации в заданной точке. Если ее вычислять, суммируя силы, действующие на точку с массой m , которые создаются концентрическими слоями с центром в этой же точке, то получится нуль. Если осуществлять расчет для концентрических слоев с центром в другой точке, удаленной на расстояние г от данной, то сила тяготения окажется равной силе, с которой шар радиусом г притягивает точку, расположенную на его поверхности.
Вопросы для обсуждения:
Какое противоречие рассматривает гравитационный парадокс?
Если гравитационный парадокс имеет место, то справедлив ли закон всемирного тяготения? Ответ поясните.
Выскажите свое мнение к возможным двум решениям парадокса.
Некоторые предложения по решению проблемы:
Конечная масса вещества. Проще всего предположить, что во Вселенной существует лишь конечное количество вещества. Эту гипотезу рассматривал ещё Исаак Ньютон в письме Ричарду Бентли. Анализ показал, что подобный «звёздный остров» со временем, под действием взаимовлияния звёзд, либо соединится в одно тело, либо рассеется в бесконечной пустоте.
Современная трактовка. Ньютоновская теория тяготения, как выяснилось в начале XX века, неприменима для расчёта сильных полей тяготения. В общей теории относительности гравитационный парадокс отсутствует, поскольку сила тяготения в ОТО есть локальное следствие неевклидовой геометрии, поэтому сила всегда однозначно определена и конечна. Основы этой теории были заложены в 1916 г А. Эйнштейном (для частного случая статической Вселенной). В общем, виде космологические решения были найдены А.А. Фридманом 1922 г, который показал, что однородная изотропная Вселенная должна быть нестационарной.
3. Подведение итогов урока
3.1. Определите свойства нестационарной Вселенной (Метагалактики ) заполнив пропуски в предложении (подготовленный текст выдается каждому ученику, работая с текстом учебника, ученик заполняет пропуски):
В основе модели нестационарной Вселенной лежит обнаружение к расного смещения для далеких галактик .
Расширение метагалактики: скорость удаления далеких объектов определяется законом Хаббла: , где Н=72
. Использование закона Хаббла позволяет определить расстояние до далеких объектов и возраст Метагалактики:
,
. Теория расширяющейся метагалактики дает законы изменения температуры и плотности:
, t – время, выраженное в секундах.
Химический состав Метагалактики: водород — около 75% , гелия – около 25%.
Выполнение антропогенного принципа, согласно которому эволюция Метагалактики идет в направлении, обуславливающем возникновение разумных существ.
Дальнейшее поведение Метагалактики определяется ее средней плотностью: в зависимости от значения средней плотности вещества (ρ) расширение может происходить неограниченно во времени или же со временем сменится сжатием. Эта зависимость определяется значением критической плотности . Поведения Метагалактики в будущем неопределенно из-за наличия темной материи , существование которой сложно обнаружить по ее излучению и включающей до 95 % от всего вещества, – черные дыры, маломассивные звезды малой светимости, нейтрино и т.д.
«Модель «горячей Вселенной» : в прошлом излучение и вещество эффективно взаимодействовали между собой, между ними существовало термодинамическое взаимодействие. Температура вещества и излучения была одинаковой и высокой – Вселенная была «горячей».
Вопросы для фронтального обсуждения:
1. Почему разбегаются галактики, хотя в то время, когда произошел Большой взрыв, их еще не существовало?
Почему Вселенная нестационарна?
Влияет ли космологическое расширение Метагалактики на расстояние между Землей и: а) Луной; б) центром Галактики; в) галактикой М31 в созвездии Андромеды; г) центром местного сверхскопления галактик?
Может ли быть бесконечное расширение Вселенной?
Каких химических элементов больше всего во Вселенной и когда они образовались?
Галактики образовались из разлетающегося вещества и сохранили его импульс.
Основная сила в космосе — это гравитация, которая стремится собрать все вещество. Равновесие при действии только сил тяготения невозможно. В зависимости от величины начальной скорости вещество может неограниченно расширяться или расширяться с замедлением
В космологическом расширении не участвуют гравитационно-связанные системы (Солнечная система, галактика, скопления галактик). Поэтому в этих случаях космологическое расширение не влияет на расстояния между Землей и указанными объектами.
Если средняя плотность вещества Вселенной будет меньше критической плотности р кр = 3 10 -27 кг/м 3 , то Вселенная будет бесконечно расширяться. Современные оценки средней плотности видимого вещества дают значение р = 3 -10 -28 кг/м 3 . Учет скрытой массы может увеличить эту величину. Таким образом, вопрос о будущем Вселенной еще не решен.
По массе во Вселенной больше всего водорода (77,4%) и гелия (20,8%). Водород и гелий образовались через 5 минут после начала Большого взрыва.
Домашнее задание: § 34, 35; выписать основные этапы эволюции Вселенной и охарактеризовать их
Примерное содержание таблицы «Этапы эволюции Вселенной»
Граница применимости релятивистской теории тяготения
Возникновение зарядовой ассиметрии
Аннигиляция нуклонов и антинуклонов
10
10
3*10
10
10
10
10
10
Граница применимости экспериментально проверенных законов физики
Образование реликтового нейтрино
10
3*10
2*10
10
10
10
10
Аннигиляция электронов и позитронов
Образование первичного гелия
10
10
10
10
10
10
10
Отрыв реликтового излучения
Начало возникновения звезд и галактик
4*10
10
10
10
Гусев Е.Б. Сборник вопросов и качественных задач по астрономии: Кн. для учащихся / Е.Б Гусев. – М.: Просвещение, 2002. – 173 с.
Чаругин В.М. Астрономия 10-11 классы : учеб. для общеобразоват. организаций : базовый уровень / В.М. Чаругин. – М.: Просвещение, 2018 – 144 с.
Источник