Филин С. Концепции современного естествознания: конспект лекций
ОГЛАВЛЕНИЕ
ЛЕКЦИЯ № 16. Микро-, макро-, мегамир
1. Микромир
Приставка «микро» означает отношение к очень малым размерам. Таким образом, можно сказать, что микромир – это что-то небольшое. В философии в качестве микромира изучается человек, а в физике, концепции современного естествознания в качестве микромира изучаются молекулы.
Микромир имеет свои особенности, которые можно выразить так:
1) единицы измерения расстояния (м, км и т. д.), используемые человеком, применять просто бессмысленно;
2) единицы измерения веса человека (г, кг, фунты и т. д.) применять также бессмысленно.
Так как была установлена бессмысленность применения единиц измерения расстояния и веса по отношению к объектам микромира, то, естественно, потребовалось изобрести новые единицы измерения. Так, расстояния между ближайшими звездами и планетами измеряются не в километрах, а в световых годах. Световой год – это такое расстояние, которое солнечный свет проходит за один земной год.
Изучение микромира вместе с изучением мегамира способствовало крушению теории Ньютона. Таким образом, была разрушена механистическая картина мира.
В 1927 г. Нильс Бор вносит еще один свой вклад в развитие науки: он сформулировал принцип дополнительности. Причиной, послужившей для формулировки данного принципа, стала двойственная природа света (так называемый корпускулярно-волновой дуализм света). Сам же Бор утверждал, что появление данного принципа было связано с изучением микромира из макромира. В качестве обоснования этого он приводил следующее:
1) предпринимались попытки объяснить явления микромира посредством понятий, которые были выработаны при изучении макромира;
2) в сознании человека возникали сложности, связанные с разделением бытия на субъект и объект;
3) при наблюдении и описании явлений микромира мы не можем абстрагироваться от явлений, относящихся к макромиру наблюдателя, и средств наблюдения.
Нильс Бор утверждал, что «принцип дополнительности» подходит как для исследования микромира, так и для исследования в других науках (в частности, в психологии).
В заключение данного вопроса стоит сказать, что микромир является основой нашего макромира. Также в науке можно выделить «микромикромир». Или, по-другому, наномир. Наномир, в отличие от микромира, является носителем света, точнее, всего спектра электромагнитных процессов, фундаментом, поддерживающим структуру элементарных частиц, фундаментальных взаимодействий и большинства явлений, известных современной науке.
Таким образом, предметы, окружающие нас, а также само тело человека не являются единым целым. Все это состоит из «частей», т. е. молекул. Молекулы, в свою очередь, также делятся на более мелкие составляющие части – атомы. Атомы тоже, в свою очередь, делятся на еще более мелкие составляющие части, которые именуются элементарными частицами.
Всю эту систему можно представить как дом или здание. Здание не является цельным куском, т. к. оно построено, допустим, с помощью кирпичной кладки, а кирпичная кладка состоит непосредственно из кирпича и раствора цемента. Если же начнет разрушаться кирпич, то, естественно, рухнет и все строение. Так и наша Вселенная – разрушение ее, если это произойдет вообще, также начнется с наномира и микромира.
2. Макромир
Естественно, есть объекты, которые по своим размерам гораздо больше объектов микромира (т. е. атомов и молекул). Эти объекты и составляют макромир. Макромир «населяют» только те объекты, которые по своим размерам соизмеримы с размерами человека. К объектам макромира можно отнести и самого человека. И, что естественно, человек является самой главной составляющей макромира.
Что же такое человек? Древний античный философ Платон как-то сказал, что человек – это двуногое животное без перьев. В ответ на это его оппоненты принесли ему ощипанного петуха и сказали: вот, Платон, твой человек! Изучение человека как объекта макромира с точки зрения его физических данных неправильно.
Прежде всего отметим, что человек – это целая совокупность различных систем: кровеносной, нервной, мышечной, костной системы и т. д. Но помимо этого, одной из составляющих человека является его энергия, которая тесно связана с физиологией. Причем энергия может рассматриваться в двух смыслах:
1) как движение и способность производить работу;
2) «подвижность» человека, его активность.
Также энергию называют аурой или ци. Энергию (или ауру) можно, как и физическое тело, развивать и укреплять.
Нервная система, мышечная система, другие системы, энергия – еще не все составляющие человека. Самой главной такой «составляющей» является сознание. Что такое сознание? Где оно находится? Можно ли его потрогать, подержать в руках, посмотреть на него?
До сих пор на эти вопросы ответов нет, да и, скорее всего, не будет. Сознание – это нематериальный объект. Сознание нельзя взять и отделить от человека – оно неотделимо.
Но вместе с этим можно попытаться выделить ингредиенты, которые составляют человеческое сознание:
Интеллект – это мыслительная и умственная способность человека. Психологи утверждают, что главной функцией интеллекта является память. Действительно, мы не можем себе представить, что же было бы с нами, если бы памяти у нас не было вообще. Просыпаясь каждое утро, человек бы начинал соображать: кто я? Что я здесь делаю? Кто меня окружает? и т. д.
К подсознанию относятся все наши «рабочие» навыки. Навыки складываются из многократно повторяемых и однообразных действий. Для того чтобы проиллюстрировать, что такое навыки, достаточно вспомнить, что мы умеем писать и читать. Видя какой-то текст, мы не думаем: а это что за буква, а это что за знак? Мы просто складываем буквы в слова, а слова в предложения.
Сверхсознание. К сверхсознанию относится прежде всего душа человека.
Душа – это также нематериальный объект (ее нельзя ни увидеть, ни подержать в руках). Совсем недавно было заявлено, что ученые узнали, сколько весит душа. Некоторые ученые утверждают, что в момент смерти человека его вес немного уменьшается, т. е. отлетает душа человека. Но данное утверждение необоснованно, так как какой разумный врач положит умирающего на весы и будет сидеть и ждать, когда же больной умрет? В клятве Гиппократа, которую дает каждый начинающий врач, говорится о том, чтобы не навредить человеку. Врач будет не сидеть, а спасать человеческую жизнь. И вообще узнать вес души нереально, так как нематериальные объекты не имеют никакого веса.
Человеческая душа – это религиозная ценность. Все мировые религии направлены на то, чтобы дать людям возможность спасти свою душу после смерти (т. е. жить вечно после физической смерти бренной оболочки души – тела человека). Борьбу за душу всегда ведут Добро и Зло. Например, в христианстве это Бог и Сатана.
3. Мегамир
Если микромир – это мир тех объектов, которые не подходят под единицы измерения человека, макромир – это мир объектов, которые сопоставимы с единицами измерения человека, то мегамир – это мир объектов, которые несоизмеримо больше человека.
Проще говоря, вся наша Вселенная – это мегамир. Ее размеры огромны, она безгранична и постоянно расширяется. Вселенную заполняют объекты, которые значительно больше нашей планеты Земля и нашего Солнца. Нередко бывает, что разница между какой-либо звездой за пределами Солнечной системы в десятки раз превосходит Землю.
Исследование мегамира тесно связано с космологией и космогонией.
Наука космология является очень молодой. Она родилась сравнительно недавно – в начале XX в. Можно выделить две главные причины рождения космологии. И, что интересно, обе причины связаны с развитием физики:
1) Альберт Эйнштейн создает свою релятивистскую физику;
2) М. Планк создает квантовую физику.
Квантовая физика изменила взгляды человечества на структуру пространства-времени и структуру физических взаимодействий.
Также очень важную роль сыграла теория А. А. Фридмана о расширяющейся Вселенной. Эта теория очень недолго оставалась недоказанной: только в 1929 г. ее доказал Э. Хаббл. Вернее, он не доказывал теорию, а обнаружил то, что Вселенная действительно расширяется. Причем следует отметить, что в то время причины расширения Вселенной установлены не были. Они были установлены гораздо позже, в наши дни. Они были установлены тогда, когда к ранней Вселенной применили результаты, полученные посредством изучения элементарных частиц в современной физике.
Космогония. Космогония – это раздел науки астрономии, который изучает происхождение галактик, звезд, планет, а также других объектов. На сегодня космогонию можно разделить на две части:
1) космогония Солнечной системы. Эту часть (или вид) космогонии по-другому называют планетной;
2) звездная космогония.
Во 2-й половине XX в. в космогонии Солнечной системы утвердилась точка зрения, согласно которой Солнце и вся Солнечная система образовались из газо-пылевого состояния. Впервые такое мнение было высказано Иммануилом Кантом. В середине XVIII в. Кант написал научную статью, которая называлась: «Космогония, или попытка объяснить происхождение мироздания, образование небесных тел и причины их движения общими законами развития материи в соответствии с теорией Ньютона». Молодой ученый захотел написать эту работу, потому что он узнал: Прусская академия наук предложила конкурс на аналогичную тему. Но Кант не смог собраться с духом и издать свой труд. Спустя какое-то время он пишет вторую статью, которая называлась: «Вопрос о том, стареет ли Земля с физической точки зрения». Первая статья была написана в сложное время: Иммануил Кант уехал из родного Кенигсберга, пытаясь подработать домашним учителем. Не получив ничего ценного (кроме своих познаний), Кант возвращается домой и в 1754 г. издает эту статью. Обе работы позже были объединены в единый трактат, который был посвящен проблемам космологии.
Теорию Канта о происхождении Солнечной системы в дальнейшем стал развивать Лаплас. Француз подробно описал гипотезу образования Солнца и планет из уже вращающейся газовой туманности, учел основные характерные черты Солнечной системы.
.
Источник
Путешествие в микромир
В предыдущей статье мы говорили о числах-гигантах. Можно сказать, что мы совершили путешествие к бесконечности, а когда подошли к Числу Грэма, то лично у меня создалось ощущение, что вот еще чуть-чуть – и мы прикоснемся к ней рукой. Сегодня я предлагаю вам еще одно путешествие. На этот раз в микромир – мир малых объектов. Настолько малых, что среди всех тех, которые мы рассмотрим, песчинка будет самой крупной. Сразу скажу, что эта статья не о физике. Мы не будем говорить о квантовых эффектах, принципе неопределенности и теории струн. Я не физик (впрочем, я думаю, что вы поняли это и на основании моего предыдущего текста). Это статья о цифрах, масштабах и красоте. Добро пожаловать.
Но начнем мы совсем с другой стороны. Прежде чем отправиться в путешествие к глубинам материи, давайте обратим свой взор вверх. Мне кажется, что макромасштабы знакомы нам все-таки чуть лучше, чем микро. Образованный читатель более-менее представляет себе, как велики расстояния во Вселенной. Например, известно, что до Луны в среднем почти 400 тысяч километров, до Солнца – 150 миллионов, до модного ныне Плутона (который уже не виден без телескопа) – 6 миллиардов, до ближайшей звезды Проксимы Центавра (не видна тоже) – 40 триллионов, до ближайшей крупной галактики туманности Андромеды (а вот она как раз замечательно видна без всяких приборов) – 25 квинтиллионов и наконец до окраин обозримой Вселенной (видны они или нет – вопрос спорный) – 130 секстиллионов. Впечатляюще конечно, но все мы любим космические новости и, честно говоря, где-то глубоко внутри уже смирились с тем, что космос очень, очень, очень велик. Да и разница между всеми этими «квадри-», «квинти-» и «сексти-» не кажется столь уж огромной, хотя они и различаются между собой в тысячу раз. Совсем другое дело микромир. Разве в нем может быть скрыто так уж много интересного, ведь ему просто негде там поместиться. Так говорит нам здравый смысл и ошибается.
Попробуйте ответить на такой вопрос. Если на одном конце логарифмической шкалы отложить самое маленькое известное расстояние во Вселенной, а на другом – самое большое, то что будет посередине? Что представляет собой это самое «среднее» расстояние? Если только что вы думали о галактиках и звездах, то наверное предположите, что оно должно быть достаточно большим, ведь Вселенная так огромна. Но на самом деле это расстояние будет равно примерно 0.1 миллиметра. Удивительно, правда? Что-то очень необъяснимое творится в этом самом микромире, раз он перевешивает громады целого космоса. Итак, 0.1 мм — размер песчинки, давайте с нее и начнем.
Песчинка является одним из мельчайших объектов из тех, которые мы все еще видим невооруженным глазом. 100 песчинок, поставленных в ряд, уместятся на ногте человеческого пальца. 10 тысяч песчинок – и вот перед нами уже метр. А если расположить их «бок о бок» вдоль земного экватора, то нам понадобится 400 миллиардов штук. Всего-то. Отдаете ли вы себе отчет, что все эти песчинки можно собрать в один большой, но совсем даже не громадный, мешок, и весить он будет всего лишь около тонны?
Что еще у нас есть такого, что едва можно рассмотреть? Человеческий волос. Волосы у людей бывают разными, но в среднем их толщина равна 50-70 микронам, то есть их 15-20 штук на миллиметр. Для того чтобы выложить ими расстояние до Луны, потребуется 8 триллионов волос (если складывать их не по длине, а по ширине, конечно). Поскольку на голове у одного человека их около 100 тысяч, то если собрать волосы у всего населения России, до Луны хватит с лихвой и даже еще останется.
Двигаемся дальше — в мир уже невидимых невооруженным глазом объектов. Бактерии. Их размер может различаться в 10 раз — от 0.5 до 5 микрон (хотя есть и уникальные экземпляры размером вплоть до 1 миллиметра). Таким образом, в толщине человеческого волоса их поместится до 100, а в сантиметре — до 20 тысяч штук. Если увеличить среднюю бактерию до такого размера, что она удобно ляжет нам в ладонь (в 100 тысяч раз), толщина волоса станет равной 5 метрам. Кстати, внутри человеческого тела обитает целый квадриллион бактерий, а их общий вес составляет 2 килограмма. На секунду остановитесь и задумайтесь, сколь значительную часть вас самих составляют бактерии. Их, собственно, даже больше, чем клеток самого тела. Так что вполне можно сказать, что человек — это просто такой организм, состоящий из бактерий и вирусов с небольшими вкраплениями чего-то еще.
Вирусы. Легко могу допустить, что кому-то они кажутся примерно тем же, что и бактерии, — я и сам иногда использую эти слова как синонимы. Размеры вирусов различаются еще больше, чем бактерий, — чуть ли не в 100 тысяч раз. Если бы дело обстояло так с людьми, то они были бы ростом от 1 сантиметра до 1 километра, и их социальное взаимодействие стало бы любопытным зрелищем. Но в целом вирусы меньше, чем бактерии. Средняя длина наиболее распространенных разновидностей — 100 нанометров или 10 -7 степени метра. Если мы снова выполним операцию приближения таким образом, чтобы вирус стал размером с ладонь, то длина бактерии будет 1 метр, а толщина волоса — 50 метров.
И, кстати, именно на этом масштабе мы подходим к размерам, которые уже не сможем разглядеть в оптический микроскоп. И вот почему. Длина волны видимого света — 400-750 нанометров, и увидеть объекты, меньшие этой величины, попросту невозможно (если только не применить какую-нибудь хитрость, например заставив их излучать). Попытавшись осветить объект, волна просто обогнет его и не отразится. Иногда задают вопрос, как выглядит атом или какого он цвета. Когда-то очень давно мне казалось, что для ответа на него нужно просто посмотреть в микроскоп, и если не хватит увеличения, то взять еще один и присоединить к первому, а потом еще и еще, пока не получится яркое и отчетливое изображение, которое уж очевидно будет какой-то формы и какого-то цвета (да, я был смышленым малым и мне это казалось отличной идеей). На самом же деле, атом не выглядит никак. Просто вообще никак. И не потому, что у нас недостаточно хорошие микроскопы, а потому что размеры атома меньше расстояния, для которого существует само понятие «видимости»… Мне просто показалось важным это отметить еще и потому, что все дальнейшие иллюстрации будут, скорее, просто картинками, а не чем-то реально отражающим формы рассматриваемых объектов.
Возвращаемся к вирусам. Если мы снова возьмем для сравнения толщину человеческого волоса, то их там поместится около 500 штук среднего размера. Когда в следующий раз будете рассматривать найденный в супе волос, представьте, как вокруг него идет хоровод из 1.5 тысяч вирусов. А вдоль окружности земного шара можно плотно разместить 400 триллионов вирусов. Много. Такое расстояние в километрах свет проходит за 40 лет. Но если собрать их всех вместе, то они легко поместятся на кончике пальца. Всего-то.
Вообще, на масштабах нанометров имеется много разных интересных объектов, но мы будем останавливаться только на тех, названия которых широко известны. Поэтому наша следующая остановка — молекулы. Например, молекула ДНК с шириной 3 на 10 -9 метра. То есть при увеличении в миллион раз ее ширина станет равной 3 миллиметрам, а если в миллиард — 3 метрам (с другой стороны, если просто взять миллиард молекул, то их даже не будет видно без очков). Таким образом, молекула ДНК меньше среднего вируса в несколько десятков раз. Хотя это не совсем честно, ведь мы сравниваем ширину (ДНК) с длиной (вируса). Но все равно соотношения здесь примерно таковы. Давайте еще для сравнения возьмем молекулу воды. Ее примерный размер — 3 на 10 -10 метра. В стакане воды таких молекул 10 септиллионов — примерно столько миллиметров от нас до Галактики Андромеды. А в кубическом сантиметре воздуха молекул 30 квинтиллионов (в основном, азота и кислорода).
Молекулы, как известно, состоят из атомов, и их размеры вполне сопоставимы. Например, диаметр атома углерода (основы всей жизни на Земле) — 3.5 на 10 -10 метра, то есть даже чуть больше, чем молекулы воды. Атом водорода в 10 раз меньше — 3 на 10 -11 метра. Это, конечно, мало. Но насколько мало? Поражающий всякое (здоровое) воображение факт состоит в том, что мельчайшая, едва различимая крупинка соли состоит из 1 квинтиллиона атомов. И я имею в виду не крупную соль с большими, хорошо различимыми гранулами, а мелкую, — ту, которая в солонках. При случае, попробуйте выделить из них одну, рассмотрите на свет и скажите про себя: «кви-нти-лли-он» (между прочим, это 10 18 ). Давайте обратимся к нашему стандартному масштабу и приблизим атом водорода так, чтобы он удобно лег в руку. Вирусы тогда будут 300-метрового размера, бактерии 3-километрового, а толщина волоса станет равна 150 километрам, и даже в лежащем состоянии он выйдет за границы атмосферы (а в длину может достать и до Луны).
Погружаемся еще на один шаг вглубь. Небольшой такой «шажок» сразу на 4 порядка, — как от размера футбольного стадиона до размера пчелы, сидящей в центре его поля. Частицы. Сразу следует сказать, что на таких масштабах само понятие размера достаточно условно. И если мы говорим об элементарных частицах, то уже приходится учитывать, какую модель мы применяем, квантовую или классическую. Так называемый «классический» диаметр электрона — 5.5 фемтометров или 5.5 на 10 -15 метра. Размеры протона и нейтрона еще меньше и составляют около 1.5 фемтометров. Ирония в том, что протоны тяжелее электронов в 1 836 раз, — уже одно это должно кое-что сказать об условностях приведенных выше размеров. Протонов в метре примерно столько же, сколько муравьев на планете Земля, хотя я не уверен, что эти два значения как-то связаны друг с другом (лично меня шокирует в этом даже не то, что протон такой маленький, а то, что муравьев у нас как-то уж чересчур много). Используем уже привычное нам увеличение. Протон удобно лежит у нас в ладони, — и тогда размер среднего вируса окажется равным 7 000 километрам (почти как вся Россия с запада на восток, между прочим), а толщина волоса в 2 раза превысит размеры Солнца.
Вам не кажется, что дальше быть уже просто нечему? Да, мы что-то слышали о кварках, но об их размерах вообще сложно сказать что-то определенное. Предполагается, что они находятся где-то в пределах 10 -19 — 10 -18 метра. Самый маленький — истинный кварк — «диаметром» (давайте для напоминания о вышесказанном будем писать это слово в кавычках) 10 -22 метра. Есть еще такая штука как нейтрино. Посмотрите на свою ладонь. Через нее ежесекундно пролетает триллион нейтрино, испущенных Солнцем. И можете не прятать руку за спину. Нейтрино с легкостью пройдут и сквозь ваше тело, и сквозь стену, и сквозь всю нашу планету, и даже сквозь слой свинца толщиной в 1 световой год. «Диаметр» нейтрино равен 10 -24 метра — эта частица в 100 раз меньше истинного кварка, или в миллиард раз меньше протона, или в 10 септиллионов раз меньше тираннозавра. Почти во столько же раз сам тираннозавр меньше всей обозримой Вселенной (точнее, был меньше, пока не вымер). Если увеличить нейтрино так, чтобы он был размером с апельсин, то даже протон будет в 10 раз больше Земли. Вот так.
А сейчас я искренне надеюсь, что вас должна поразить одна из двух нижеследующих вещей. Выбирайте любую из них и наслаждайтесь. Первая — мы можем продвинуться еще дальше (и даже сделать какие-то осмысленные предположения о том, что там будет). Вторая — но при этом двигаться вглубь материи бесконечно все-таки нельзя, и вскоре мы уткнемся в тупик. Какое из этих утверждений кажется вам более удивительным? Лично мне, наверное, все-таки второе. Вот только для достижения этих самых «тупиковых» размеров нам придется опуститься еще на 11 порядков, если считать от нейтрино. То есть эти размеры меньше нейтрино в 100 миллиардов раз. Во столько же раз песчинка меньше всей нашей планеты, кстати. Если вас это не поражает, то я просто не знаю, о чем с вами можно разговаривать…
Итак, на размерах 10 -35 метра нас ждет такое замечательное понятие, как планковская длина, — минимальное расстояние из возможных в реальном мире (насколько это принято считать в современной науке). Еще здесь обитают квантовые струны — объекты весьма примечательные с любой точки зрения (например, они одномерны, — у них нет толщины), но для нашей темы важно, что их длина тоже находится в пределах 10 -35 метра. Давайте проделаем наш стандартный «увеличительный» эксперимент в последний раз. Квантовая струна становится удобного размера, и мы держим ее в руке как карандаш. При этом нейтрино будет в 7 раз больше Солнца, а атом водорода в 300 раз превысит размеры Млечного Пути.
Наконец мы подошли к самой структуре мироздания — масштабу, на котором пространство становится похожим на время, время на пространство, и происходят разные другие причудливые штуки. Дальше уже ничего нет (наверное)…
Ну что ж, я надеюсь, что вам было интересно, и что если вы дочитали до этого места, то не пожалели о потраченном времени. Если так, то не поленитесь зайти по следующей ссылке, и вы сможете увидеть всё то же самое и многое другое, но только в картинках и со шкалой реальных масштабов объектов микро- и макромира.
А если вы заметите в моем тексте какую-то ошибку, то напишите, пожалуйста, об этом в комментариях. Я буду рад исправить данный текст, чтобы он более точно отражал окружающую нас действительность, такую удивительную и многообразную.
Источник