Вселенная по ньютону по эйнштейну по фридману
Система Мира — это представления о расположении в пространстве и движении Земли, Солнца, Луны, звезд.
Очень простая и наглядная система мира в древнем Вавилоне:
(А Вы знаете что-нибудь о представлениях, например, древних китайцев?)
Шли годы, и мы теперь можем следить за гениальными догадками (умозаключениями) гениальных людей.
Древнегреческий ученый Клавдий Птолемей (ок.90-ок.160 гг.) в своем труде “Альмагест” предложил геоцентрическую систему Мира:
Однако трудно описать движение планет, приходится вводить много дополнительных предположений.
. И поплыл Колумб в Индию, а открыл Америку.
(Детский вопросик — Интересно, Колумб попал не туда из-за того, что неправильно ориентировался по звездам?)
Николай Коперник (1473-1543 гг.) провозгласил в своей книге “Об обращении небесных сфер” гелиоцентрическую систему мира.
Огромный прорыв в описании Мира, но … звезды по прежнему «прибиты гвоздями» к небосводу.
Прошло еще почти 150 лет, пока не пришел еще один гений – Ньютон.
Вселенная Ньютона
Сэр Исаак Ньютон (1643-1727 гг.) в своем труде “Математические начала натуральной философии” (1687 г.) заложил основы классической физики:
- 1. Существует абсолютное пространство, которое однородно, изотропно и имеет бесконечную протяженность.
- 2. Существует абсолютное (истинное и математическое) время. Время бесконечно и имеет одно измерение.
В основе механики Ньютона лежат три аксиомы (три закона):
- 1. Первый закон — закон инерции: всякое тело, на которое не действует внешняя сила, сохраняет по инерции (вследствие наличия инертной массы) состояние покоя или равномерного прямолинейного движения.
- 2. Второй закон — закон движения
F=m и a F — вынуждающая сила, a — ускорение, m и — инерциальная масса.
- 3. Третий закон — закон действия и противодействия: всякому действию соответствует равное по величине и противоположно направленное противодействие.
(Кстати говоря, а что такое механика?)
Решил Ньютон отдохнуть после трудов праведных в саду, и … получилось, что в конце 17 века он установил закон тяготения:
между всеми телами на Земле действуют силы притяжения — гравитационные силы.
F гр = g * m гр * M гр / r 2
g — гравитационная постоянная.
(Детский вопросик — Интересно, а откуда Ньютон узнал о «своих», законах, он что, их сам придумал?)
Обратим внимание, что в уравнениях Ньютона появилось две разных массы: инертная масса m и и гравитационная масса m гр .
Различны ли эти массы?
Сейчас доказано, что m гр =m и с точностью до 10 -12 .
(Детский вопросик: Луна притягивается к Земле, почему до сих пор она не упала на Землю?
Детский вопросик: Почему камень падает на Землю, а не Земля на камень?).
Разобравшись с тем, что происходит на Земле, Ньютон попытался описать самую большую физическую систему — Вселенную .
Для этого Ньютон сделал гениальное предположение –
пусть законы, установленные на Земле, будут действовать и во всей Вселенной,
т.е. эти законы будут мировыми законами .
В конце 17 века считалось, что Вселенная — шар, и вещество (звезды) во Вселенной однородно распределено по объему шара.
Между частицами — звездами действуют, как считал Ньютон, только гравитационные силы, т.е. силы притяжения, поэтому шар должен сжаться в точку, т.е. произойти гравитационный коллапс
Но если Вселенная — бесконечна, то произвольная точка в бесконечной Вселенной испытывает одинаковое притяжение в любом направлении и поэтому остается на месте.
Ньютон делает гениальный вывод:
Вселенная является бесконечной и стационарной (т.е. неизменной во времени) ,
но сам Ньютон понимал, что такая Вселенная очень неустойчива.
Что же делать? Ньютон не успел больше ничего совершить, и Мир ждал появления следующего гения – Эйнштейна.
Вселенная Эйнштейна
Эйнштейн рассмотрел Вселенную, которая также была стационарной, изотропной и однородной (как у Ньютона). Чтобы уравновесить силы притяжения, ввел новую силу — силу отталкивания.
Теперь Вещество во Вселенной удерживается двумя силами — притяжения и отталкивания.
Строгое математическое решение сформулированной задачи показало нетривиальный результат:
Вселенная может быть стационарной, но если только она (Вселенная) имеет конечные размеры, но неограниченна.
Как же тело может быть конечным, но не иметь границ?
Возьмите сферу — площадь ее конечна, но как определить границу сферы? Ее нет. По аналогии можно представить себе, что существует некое четырехмерное пространство (какой-то гипершар), где наша Вселенная служит трехмерной границей гипершара. Если на Земле вы, двигаясь по меридиану из любой точки, вернетесь в ту же точку, то и во Вселенной Эйнштейна, двигаясь “по прямой”, вы окажетесь в исходной точке.
Но что это за таинственные силы отталкивания и нужны ли они?
Что знали ученые о Вселенной в 20-х годах XX века? Результаты наблюдательной астрономии позволили ученым утверждать, что Вселенная в целом однородна и изотропна.
Но если это так, то почему ночью темно, а не светло как днем?
Действительно, рассмотрим, сколько света поступает от звезд.
Разделим Вселенную на отдельные слои.
Количество звезд N в слое : N
4 * p * R 2
Но светимость: Q
1 / R 2
Два слоя на расстоянии R 1 и R 2 от Земли.
В первом слое: N 1 и общая светимость Q 1
N 1 / R 1 2 .
Светимость второго слоя Q 2
N 2 / R 2 2 .
Ясно, что Q 1 = Q 2 .
Поскольку слоев бесконечно много, то и света должно быть бесконечно много. Ночью должно быть светло, как днем — вот о чем говорит парадокс Ольберса.
Что же делать? Опять ждать гения? Но может быть, стоит и самим чуточку подумать?
Исходные посылки: Вселенная бесконечна, изотропна, однородна и постоянна.
Изотропность и однородность установлены точно и здесь ничего изменить нельзя.
Делаем вывод, что либо Вселенная не бесконечна, либо Вселенная изменяется со временем.
И здесь на помощь приходит еще один гений — американский астроном Хаббл
В 1929 г. Хаббл измерял скорости движения галактик. Для этого он определял так называемое “красное смещение” — наблюдаемый в спектрах излучения галактик сдвиг спектральных линий, присущих определенным химическим элементам, в сторону более длинных волн по сравнению с их нормальными.
И он получил следующую картину:
Скорость (v) удаления галактик в зависимости от их расстояния (R) от нашей Галактики описывается простым выражением (Э. Хаббл, 1929)
v=HR
Постоянная Н называется постоянной Хаббла и ее современное значение составляет около 70 км/с Мпк.
Наблюдаемое Хабблом красное смещение означает, что объект удаляется от наблюдателя.
Итак, существующая Вселенная нестационарна, галактики убегают от нас.
Ура (ликуют все жители Земли), значит, Земля (точнее, наша галактика) является центром Вселенной?
Ликование было недолгим, потому что опять вмешивается наш разум и приводит простую аналогию с воздушным шариком.
Будем надувать воздушный шарик с нарисованными на нем точками 1, 2, 3.
Происходит “разбегание” точек 1, 2 и 3 по поверхности шара при увеличении его размеров.
Так и во Вселенной. Все галактики разбегаются друг от друга, и конечно, возникает вопрос, почему?
На помощь снова приходит гениальный ученый – теперь это русский ученый Фридман
В начале 20-х годов он предложил модель нестационарной Вселенной.
Если сейчас галактики разбегаются, то вчера они были ближе, а позавчера еще ближе друг к другу, а значит был момент времени t=0, когда все началось из какой-то точки. Обратите внимание, что здесь самое главное – это временная шкала, мы приходим к выводу о моменте рождения Вселенной.
Конечно, мы получаем также свидетельство, что Вселенная была в точке (в математическом смысле, а вспомните, что есть точка в математике?), но реально никакой точки не было.
Но почему галактики разбегаются. Предположим, что в начальный момент времени уже были галактики и занимали какое-то пространство.
Предположим также, что в начальный момент галактики были в покое, т.е. их скорость v=0. Тогда галактики будут притягиваются друг к другу и Вселенная будет сжиматься.
Но если в начальный момент скорости были большими и направлены таким образом, что галактики удалялись друг от друга, то мы получим, что и в настоящее время галактики удаляются друг от друга (правда, с меньшей скоростью, поскольку тяготение «тормозит» их движение).
Время рождения Вселенной грубо можно оценить из закона Хаббла: зная расстояние между галактиками и скорость их расхождения, можно из S=vt найти время t. После введения поправок на замедление расширения получаем время рождения Вселенной — примерно 15 млрд лет тому назад.
Итак, был начальный момент, когда произошел «Большой Взрыв»
(Детский вопросик – Что, где и когда взорвалось?)
Иными словами, после «взрыва» частицы получают огромную начальную скорость и начинают разлетаться во все стороны. Если силы притяжения, которые стремятся собрать частицы воедино, малы, то частицы все время будут разлетаться. Однако если силы притяжения велики, то через некоторое время они изменят знак скорости движения частиц на противоположный и частицы начнут сближаться. Ясно, что гравитационные силы зависят от плотности частиц в объеме Вселенной — чем больше плотность, тем больше силы F тяг . Из приведенных условий ясно, что сценарий развития Вселенной зависит от плотности вещества в современную эпоху, т.е. существует критическая величина плотности r Вселенной. Открытая модель соответствует r r кр . Обратное неравенство справедливо для закрытой модели. По современным данным, критическая плотность вещества составляет r кр = 5х10 -30 г/см 3 . Примерно такое же значение дают оценки плотности вещества во Вселенной.
Изменение размера R Вселенной с течением времени t для Вселенной с разной плотностью.
Строгое решение задачи об эволюции (развитии) Вселенной показывает:
Неужели все так просто и ясно? Что же еще ученым надо, и что они делали после этого еще 70 лет?
Однако в последнее время появились новые астрономические данные, проливающие свет на современное состояние Вселенной и на ее будущее. Подробнее см. тему 5.
Спасибо, что осилили сложную тему.
Мне кажется, что теперь вы в состоянии создать такую фигуру:
Источник
Как устроена Вселенная. Часть I.
Невозможно представить, насколько ниже в
своем развитии оказалось бы человечество,
если бы оно никогда не видело звездного неба.
Анри Пуанкаре.
Нестационарная Вселенная Фридмана.
Идея о том, что рождение Вселенной началось с взрыва, была высказана российским ученым Александром Фридманом. В 1922 году журнал «Zeitschrift fur Physik» опубликовал статью «О кривизне пространства», автором которой оказался петербургский математик Фридман- имя это мало что говорило физикам-теоретикам Запада.
Хотя Александр Александрович Фридман к началу 20-х годов вовсе не был безвестным начинающим ученым. Просто он ранее никогда не занимался теоретической физикой, поскольку являлся крупным специалистом по теоретической метеорологии, динамике атмосферы и весьма известным математиком.
Он отличался невероятной дотошностью, умением глубоко проникать в суть изучаемого предмета, влезать в его тонкости. Не случайно, когда Фридман заинтересовался теорией относительности, его друзья заявили: «Теперь мы будем, наконец, знать теорию относительности».
Несмотря на неизвестность автора в кругу физиков-теоретиков, статья сразу же обратила на себя внимание. И не удивительно. В скромном по объему сообщении утверждалось, что кривизна нашего пространства должна изменяться, и стационарная Вселенная, которую отстаивал Эйнштейн, невозможна
Давайте вспомним. Вселенная Ньютона была бесконечной и населенной бесконечным количеством звезд. Такой подход Ньютона понятен; если бы число звезд было конечным, то, по расчетам, сила взаимного притяжения стянула бы их воедино в гигантский звездный клубок.
В модели Вселенной Ньютона есть два парадокса, необъяснимых с точки зрения его теории. Судите сами: если число звезд бесконечно, то они должны создавать яркую и равномерную освещенность неба. А этого на самом деле нет.
Кроме того, в бесконечной Вселенной само тяготение должно возрастать бесконечно, и это должно вызвать огромные скорости движения звезд. А на опыте ничего подобного не наблюдалось.
Ньютон обнаружил эти несоответствия в своей модели, но решил эту проблему достаточно просто, придя к выводу, что Бог всегда присутствует во Вселенной и исправляет эти несообразности [1].
Пытаясь понять, что представляет собой Вселенная, Эйнштейн столкнулся с теми же трудностями, которые рождает бесконечность. В своей работе «Вопросы космологии и общая теория относительности» он пишет: «Мне не удалось установить граничные условия для пространственной бесконечности… Если бы можно было рассматривать мир в его пространственной протяженности как замкнутый, то подобного рода граничные условия были бы вообще не нужны» [2].
Натолкнувшись на идею конечной Вселенной, Эйнштейн все свои силы сосредоточил на поиски доказательств правильности – или хотя бы возможности — ее существования.
Чтобы избавиться от пороков бесконечности, Эйнштейн заменил бесконечную «плоскую» ньютонову Вселенную конечной. Конечное пространство по необходимости должно быть замкнутым и искривленным, подобно тому, как обязательно искривлена любая замкнутая поверхность.
Далее Эйнштейн предположил, что средняя плотность материи во Вселенной постоянна и настолько велика, что обеспечивает положительную кривизну. Надо сказать, что только при положительной кривизне пространство замкнуто и конечно.
Исходя из факта малых звездных скоростей, Эйнштейн предположил, что Вселенная должна быть стационарной, что ее структура и кривизна не должны меняться со временем.
Однако из его теории вытекала новая проблема: под действием гравитационных сил замкнутая Вселенная должна сжиматься. Получалось, что, избавляясь от неприятностей, связанных с бесконечностью Вселенной, Эйнштейн наткнулся на неприятности, вызванные именно конечностью, замкнутостью нашего мира.
Чтобы выйти из трудного положения, и сохранить стационарность Вселенной, Эйнштейн был вынужден ввести в свои уравнения поля тяготения так называемый космологический член. Иными словами, он ввел новую «антигравитационную силу», которая удерживает звезды на расстоянии друг от друга и препятствует стягиванию Вселенной. Поддерживает стационарность Вселенной.
«Не от хорошей жизни» ввел он эту постоянную. «Для того, чтобы придти к этому свободному от противоречий представлению, мы должны были все же ввести новое расширение уравнений поля тяготения, не оправдываемое нашими действительными знаниями о тяготении» [2].
Ему была необходимо стационарность Вселенной. Поэтому он утверждал, что пространство-время само по себе всегда расширяется и этим расширением уравновешивается притяжение всей остальной материи во Вселенной, так что в результате Вселенная оказывается статической.
Вселенная.
С большим трудом, преодолевая огромные препятствия, Эйнштейн, наконец, построил модель мира, которая достаточно хорошо отражала мир реальный. Во всяком случае, в известных тогда науке границах.
И вот теперь какой-то Фридман заявляет, что Вселенная нестационарна.
А что, собственно, сделал Фридман?
Оказывается, он нашел общее решение системы уравнений тяготения, и пришел к выводу: Вселенная нестационарна, ее кривизна меняется. Решение Эйнштейна является лишь частным случаем.
Решение Фридмана открывало две возможности: монотонное в одном направлении, например, непрерывное расширения, или периодическое возрастание и уменьшение кривизны. Во втором случае Вселенная, словно сердце, должна была то расширяться, то сжиматься.
Прочитав статью Фридмана, Эйнштейн тот час же отреагировал на нее, написав ответ под названием «Замечания к работе А. Фридмана». Он писал: «Результаты относительно нестационарного мира , содержащиеся в упомянутой работе, представляются мне подозрительными».
Фридман устоял перед силой авторитета. Он заново произвел все вычисления, причем решил систему уравнений без всяких упрощений и дополнительных космологических членов, и попросил своего товарища, физика Краткова, ехавшего в Берлин, передать их Эйнштейну.
Спустя несколько месяцев в том же журнале появилась еще одна маленькая заметка. Вот она целиком. «К работе А. Фридмана “О кривизне пространства”. В предыдущей заметке я подверг критике названную выше работу. Однако, моя критика, как я убедился из письма Фридмана, сообщенного мне господином Крутковым, основывалась на ошибке в вычислениях. Я считаю результаты г. Фридмана правильными, и проливающими новый свет. Оказывается , что уравнения поля допускают наряду со статическими также и динамические (т.е. переменные относительно времени) центрально-симметричные решения для структуры пространства» [3].
Эйнштейн не был бы Эйнштейном, не появись этого публичного признания своей неправоты.
Но вернемся к нестационарной Вселенной Фридмана. В своих исследованиях Фридман сделал исходное предположение: Вселенная одинакова во всех направлениях и остается таковой, откуда бы мы ее ни рассматривали. Долгое время считалось, что предположение об одинаковости Вселенной является грубым приближением к реальной Вселенной. В модели Фридмана все галактики удаляются друг от друга. Это вроде бы как надутый шарик, на который нанесены точки, и если его все больше надувать, расстояние между точками увеличивается. При этом ни одну из точек нельзя назвать центром расширения.
Словом, Фридман в 1922 году доказал, что Вселенная не должна быть статической. Это произошло за несколько лет до открытия Хаббла.
В 1924 году американский астроном Эдвин Хаббл показал, что наша Галактика не является единственной. Существует много галактик, разделенных огромными областями пустого пространства. Если бы наблюдатель увидел нашу Галактику извне, то он обнаружил бы, что она имеет вид спирали и медленно вращается. Звезды в ее спиральных рукавах делают примерно один оборот вокруг ее центра каждые несколько сотен миллионов лет. Наше Солнце представляет собой обычную желтую звезду средней величины, расположенную на внутренней стороне одного из спиральных рукавов.
Продолжив свои исследования, в 1929 году Хаббл, фотографируя спектры далеких галактик, получил неопровержимые доказательства того, что Вселенная расширяется. Это открытие Хаббла явилось триумфом Фридмана, до которого Фридман не дожил, скончавшись от холеры в 1925 году в возрасте 36 лет.
Сегодня известно, что Вселенная расширяется за каждую тысячу миллионов лет на 5-10%. Все галактики удаляются от нас, причем, чем дальше находится галактика, тем быстрее она удаляется.
Открытие расширяющейся Вселенной было одним из великих интеллектуальные переворотов двадцатого века.
Лауреат Нобелевской премии физик-теоретик Стивен Хокинг пишет: «Имеющиеся данные говорят о том, что Вселенная, вероятно, будет расширяться вечно. Единственное, в чем можно быть совершенно уверенным, так это в том, что если сжатие Вселенной все-таки произойдет, то никак не раньше, чем через десять миллионов лет, ибо, по крайней мере, столько времени она уже расширяется. Но это не должно нас тревожить: к тому времени, если мы не переселимся за пределы Солнечной системы, человечества давно уже не будет — оно угаснет вместе с Солнцем» [4].
В соответствии с теорией Фридмана, которая дает удивительно точное описание нашей Вселенной, пространство-время, наполненное чрезвычайно плотной материей, появилось в результате чудовищного взрыва из точки и начало неудержимо расширяться.
1. Тихоплав В.Ю., Тихоплав Т.С. «Научно-эзотерические основы Мироздания». лекция № 11
2.Эйнштейн А. Сборник научных трудов. Т.I-IV.: Наука, 1966.
3. Ливанова А.Три судьбы постижения мира М.: Знание, 1969.
4.Хокинг С. Краткая история времени. СПб.: Амфора, 2005.
Источник