Большое сжатие
Большое сжатие – один из сценариев смерти Вселенной. Как и все остальные, он отталкивается от теории относительности, созданной Эйнштейном. Если в Большом Взрыве заложено начало всего, то прогнозы Большого сжатия раскрывают детали финала.
В нем говорится, что расширение Вселенной, запущенное Большим Взрывом, не продлится вечность. В определенный временной отрезок Вселенная перестанет расширяться и рухнет в себя, пока не трансформируется в гигантскую черную дыру. Все прекрасно представляют, что это место выступает максимальным компрессором. Отсюда и название «Большое сжатие».
Возможные варианты конца Вселенной
Чтобы точно определить, какова вероятность подобного исхода, исследователям необходимо побольше разузнать об определенных свойствах Вселенной. Одно из важнейших – плотность. Полагают, что если она выше критической, то можно готовиться к коллапсу.
С самого начала предполагалось, что на процесс расширения влияют: гравитация между галактиками (пропорциональна плотности) и внешний импульс от Большого Взрыва. Если вы подбрасываете что-то в воздух, то оно все равно упадет на землю. Поэтому победа гравитационных сил была логичным предсказанием. Но так считали до того, как выяснилось, что Вселенная не замедляется, а ускоряется.
Чтобы разъяснить этот момент, пришлось признать наличие еще одного секретного вещества – темная энергия. Она раздвигает галактики и не состыковывается со сценарием Большого Сжатия. Рентгеновские данные Чандра показывают, что сила темной энергии стабильна. Если бы она росла вместе с расширением, то можно было бы говорить о еще одном варианте – Большой Разрыв, где все (включая атомы) распадается на части.
Но даже при постоянной темной энергии Вселенная продолжает расширяться. Так что, если приборы не найдут ничего нового, то теория с Большим сжатием так и останется теорией.
Источник
10 теорий о конце Вселенной
Больше всего во Вселенной нас удивляет то, как мало мы о ней знаем. И точно так же, как мы хотим знать, что происходит с нашей смертью, наука задается вопросом о том, что происходит в конце Вселенной. Научное сообщество произвело много теорий — и некоторые действительно впечатляют.
Большое Сжатие
Большое Сжатие, как вы можете догадаться, это противоположность Большому Взрыву. Вся материя расширяется наружу к краям Вселенной под воздействием гравитации нашей вселенной. Согласно этой теории, гравитация в конечном счете замедлится и начнет сокращаться. Это сокращение вернет всю материю (планеты, звезды, галактики, черные дыры — все) обратно в центр, с которого все началось, и сожмет в сингулярность. Мы окажемся в тех же условиях, в которых была вселенная до Большого Взрыва — вся материя вселенной сожмется в бесконечно малую точку — инфинитезималь.
Однако вряд ли это произойдет, если верить тем знаниям, которые у нас сейчас есть, поскольку Вселенная расширяется все более быстрыми темпами.
Неизбежная тепловая смерть Вселенной
Вселенная живет по тем же правилам, что и любая термодинамическая система, и все они в конечном счете закончат одинаково: когда тепло равномерно распределится. Грубо говоря, ветер разнесет тепло по всей Вселенной, и она станет холодной, темной и скучной. Все звезды, которые мы знаем, померкнут одна за одной, и однажды не хватит энергии зажечь новые. Вся вселенная погаснет. Материя будет, но в форме частиц, и их движение будет совершенно случайно. Вселенная будет в состоянии равновесия, и эти частицы будут отскакивать друг от друга, не обмениваясь энергией. Мы останемся «смятым окурком, плевком, в тени под скамьей, куда угол проникнуть лучу не даст. И слежимся в обнимку с грязью, считая дни, в перегной, в осадок, в культурный пласт».
Тепловая смерть из-за черных дыр
В конечной вселенной эти черные дыры в конечном итоге поглотят большую часть материи и мы останемся наедине с темной вселенной. Время от времени будет вспышка света, почти как молния, когда объект подойдет достаточно близко к черной дыре, чтобы испустить энергию, и снова все погрузится во тьму. В конечном итоге останутся только гравитационные колодцы в нигде. Массивные черные дыры поглотят меньшие и станут еще больше. Таким будет финальное состояние вселенной. Со временем черные дыры испаряются (теряют свою массу), излучая так называемое излучение Хокинга. Поэтому, когда умрет последняя черная дыра, мы останемся с равномерно распределенными субатомными частицами излучения Хокинга.
Конец времени
Предположим, что мы живем во Вселенной, когда никогда не закончится. С бесконечным количеством временем все, что может случиться, случится со 100-процентной вероятностью (согласно теории Пуанкаре). Этот же парадокс произойдет, если вы будете жить вечно. Вы живете бесконечное время, поэтому любое событие случится гарантированно (и произойдет бесконечное количество раз). Поэтому, если вы будете жить вечно, шанс того, что вы застынете во времени, 100-процентный. Поскольку это допущение спутало множество расчетов, которые пытались предсказать конец нашей вселенной, ученые предположили кое-что еще: само время должно однажды остановиться.
Допустим, вы будете живы, чтобы это испытать (миллиарды лет после конца Земли), но вы не сможете понять, что что-то пошло не так. Время просто остановится и все замерзнет, как снимок, как слепок, навсегда. Но и навсегда это не будет, потому что время просто не будет двигаться вперед. Это будет просто один момент времени. Вы никогда не умрете и не постареете. Это своего рода псевдобессмертие, но вы об этом никогда не узнаете.
Большой Отскок
Физикам не нравится это объяснение, поэтому некоторые ученые полагают, что вселенная просто не вернется обратно к сингулярности. Скорее она очень близко приблизится к этому состоянию и отскочит, подобно тому, как мяч отскакивает от пола. Большой Отскок в этом плане очень похож на Большой Взрыв и теоретически может породить новую вселенную. В этом колеблющемся цикле наша вселенная может стать первой вселенной в серии или четырехсотой. Никто не узнает об этом.
Большой Разрыв
Самая страшная часть этой теории в том, что хотя большинство этих сценариев случаются после того, как сгорают звезды, Большой Разрыв должен произойти, по ранним оценкам, через 16 миллиардов лет. На этой стадии Вселенная, планеты и теоретически жизнь еще будут существовать. Этот катаклизм может сжечь ее живьем, оторвать от всего сущего и скормить космическим львам, которые живут между вселенными. Неизвестно, что будет. Но эта смерть явно более жестокая, чем медленная тепловая смерть.
Событие вакуумной метастабильности
Но не переживайте: вселенная все еще будет там. Законы физики будут другими, а возможно — и другая жизнь. Но во вселенной не будет ничего, чего мы не смогли бы понять.
Временной барьер
Поскольку законы физики не имеют смысла в бесконечной вселенной, единственный вывод, который можно сделать, это то, что существует физическая граница, предел, за который выйти нельзя. И если верить физикам, в следующие 3,7 миллиарда лет мы пересечем этот временной барьер, и для нас вселенная закончится. Хотя куда более вероятно то, что мы просто не можем понять и описать этот принцип с нашей физической терминологией.
Этого не будет (поскольку мы живем в мультивселенной)
Количество новых вселенных всегда будет большем, чем старых, поэтому в теории число вселенных увеличивается.
Вечная вселенная
Так вот, не с сингулярности Большого Взрыва начался отсчет времени, время могло существовать и раньше (за бесконечность до этого), а сингулярность и результирующий взрыв могли стать следствием столкновения двух бран (структур пространства-времени более высокого уровня бытия). В этой модели Вселенная циклична и будет продолжать расширяться и сжиматься всегда.
Мы, кстати, можем выяснить это в ближайшие 20 лет — у нас есть спутник Планк, исследовавший космос в поисках паттернов микроволнового фона, которые подскажут нам что-нибудь о происхождении Вселенной. Это долгий процесс, но он предоставит нам знания о том, с чего началась наша Вселенная, а возможно подскажет, чем она закончится.
Источник
Что будет, если Вселенная начнет сжиматься?
Общепринятой теорией начала Вселенной является Большой взрыв. Это событие считается точкой отсчета. Большой взрыв повлек за собой зарождение Вселенной и стал началом ее расширения, которое продолжается до сих пор. Но также существует теория Большого сжатия, по которой Вселенная в определенный момент начнет сжиматься. К чему это приведет, что будет происходить при сжатии и при каких условиях возможен такой сценарий?
Условия при которых Вселенная может начать сжиматься
Расширение или сжатие вселенной зависит от силы гравитации между галактиками и от плотности материи. Если плотность будет ниже критической, то Вселенная продолжит расширяться. Но, если плотность будет выше критической, то силы гравитации остановят расширение Вселенной и она начнет сжиматься.
В каком состоянии Вселенная находится сейчас?
Понять в каком состоянии сейчас находится Вселенная нам помогает постоянная Хаббла. С ее помощью мы знаем с какой скоростью от нас удаляются галактики. На данный момент известно, что галактики на расстоянии 10 мегапарсек (3.26*10^7 световых лет) от Земли отдаляется от нас со скоростью 700 км/сек. А вот галактика в 100 мегапарсек (3.26*10^8 световых лет) становятся дальше от земли со скоростью 7,000 км/сек. Из этого мы делаем вывод, что чем дальше от нас объект, тем быстрее он отдаляется.
13.8 миллиардов лет назад Большой взрыв запустил расширение Вселенной, которое продолжается до сих пор. По логике вещей со временем ускорение должно замедляться. Но исследования показали обратные результаты. Вселенная продолжает ускоряться и делает это все быстрее и быстрее. Узнать точную причину, почему так происходит пока не удалось.
Что будет происходить при сжатии ?
Сжатие приведет к разрушению всего во Вселенной. Между собой начнут сталкиваться галактики, звезды, планеты и частицы. При этом Вселенная будет становится все горячее, температура поднимется до точки на которой будет происходить распад атомов. Начнут образовываться черные дыры, сначала небольших размеров, после они будут соединяться друг с другом. В итоге этот процесс приведет к появлению одной большой черной дыры, а она в свою очередь сожмется в сингулярность — первоначальное состояние Вселенной.
При таком раскладе существует теория, что Вселенная является цикличной. То есть после Большого сжатия вполне возможно снова последует Большой взрыв или другими словами Большой отскок. Но пока исследования в этой области малы и подобный сценарий допустим только на уровне гипотезы. В частности более подробно будет известно о Большом сжатии после исследования темной энергии, о которой мы пока знаем не много, но которая как раз и ответственна за расширение Вселенной.
Но даже если Вселенная не начнет сжиматься, а продолжит расширение это не приведет ни к чему хорошему. В сценарии постоянного расширения в далеком будущем Вселенная станет пустой, холодной, однородной и изотропной на всех масштабах.
Делитесь этой статьей в своих социальных сетях, а также не забывайте поставить палец вверх, подписаться на наш канал и оставить комментарий, если вам понравилась данная публикация!
Источник
Спросите Итана: может ли Вселенная всё-таки прийти к Большому сжатию?
Для Большого отскока требуется фаза повторного схлопывания (Большое сжатие), за которой следует расширение (новый Большой взрыв)
Одним из крупнейших прорывов XX века стало определение того, насколько на самом деле наша Вселенная богатая, обширная и массивная. В объёме радиуса порядка 46 млрд световых лет содержится примерно два триллиона галактик. Наша наблюдаемая Вселенная позволяет нам воссоздать всю историю нашей космической истории, протянувшуюся назад вплоть до Большого взрыва и даже, вероятно, немножечко дальше. А что насчёт будущего? Что насчёт судьбы Вселенной? Определённая ли она? Именно это и хочет знать наш читатель:
Вы писали, что Вселенная расширяется с замедляющейся скоростью. Я думал, что Нобелевскую премию выдали за открытие того, что Вселенная расширяется с ускорением. Можете ли вы уточнить ведущие теории? Есть ли среди возможностей Большое сжатие?
Лучшее предсказание будущего поведения находится в прошлом. Но как люди, так и Вселенная иногда могут нас удивить.
После Большого взрыва Вселенная была почти идеально однородной, была заполнена материей, энергией и излучением и быстро расширялась. Эволюция Вселенной в любой момент определяется энергетической плотностью её содержимого.
Скорость расширения Вселенной в любой момент зависит только от двух вещей: общей плотности энергии, существующей в пространстве-времени и пространственной кривизны. Если мы понимаем законы гравитации и то, как разные типы энергии эволюционируют со временем, мы можем воссоздать, какой была скорость расширения в любой момент прошлого. Также мы можем изучить различные удалённые объекты, находящиеся на разных расстояниях от нас, и измерить, как сильно растянулся их свет из-за расширения пространства. Каждая галактика, сверхновая, облако молекулярного газа, и т.п. — всё, что поглощает или испускает свет — расскажет космическую историю того, как расширение пространства растянуло его с момента, когда он был испущен, и до момента, когда мы смогли его наблюдать.
Чем дальше галактика, тем быстрее она удаляется от нас из-за расширения, и тем более её свет испытывает красное смещение, из-за чего нам приходится смотреть во всё более и более длинных волнах.
Из различных независимых наблюдений мы смогли сделать вывод, из чего именно состоит Вселенная. Три крупных и независимых линии наблюдения — это:
- Температурные флуктуации реликтового излучения, несущие в себе информацию о кривизне Вселенной, нормальной материи, тёмной материи, нейтрино и общей плотности содержимого.
- Корреляция между галактиками на крупнейших масштабах — известная, как барионные акустические осцилляции — выдающая очень чёткие результаты измерений общей плотности материи, соотношение нормальной и тёмной материи, и изменение скорости расширения со временем.
- И самые отдалённые и яркие стандартные свечи Вселенной, сверхновые типа Ia, сообщающие нам скорость расширения и детали эволюции тёмной энергии.
Стандартные свечи (L) и стандартные линейки ® — две различные техники, используемые астрономами для измерения расширения пространства на различных расстояниях и в различное время в прошлом
Все эти свидетельства вместе указывают на одно непротиворечивое изображение Вселенной. Они говорят нам о том, что есть во Вселенной сегодня, и дают нас космологию, в которой:
- 4,9% энергии Вселенной заключено в нормальной материи (протоны, нейтроны, электроны).
- 0,1% энергии находится в виде массивных нейтрино (ведущих себя в последние времена как материя, а в ранние — как излучение).
- 0,01% энергии существует в виде излучения (фотоны).
- 27% энергии заключено в тёмной материи.
- 68% энергии находится в виде энергии, присущей самому пространству: тёмной энергии.
Они дают нам плоскую Вселенную, с кривизной в 0%, Вселенную без топологических дефектов (магнитных монополей, космических струн, доменных стен, космических текстур), и Вселенную с известной историей расширения.
Относительная важность различных энергетических компонентов Вселенной в разное время в прошлом. В будущем тёмная энергия приблизится к 100% важности.
Уравнения, управляющие ОТО, в этом смысле весьма определённые: если мы знаем, из чего сегодня состоит Вселенная, а также законы гравитации, мы точно знаем, насколько важным был каждый из компонентов в любой точке прошлого. Сначала доминировали излучение и нейтрино. Миллиарды лет тёмная материя и нормальная материя были самыми важными составляющими. А в последние несколько миллиардов лет — и со временем ситуация будет только ухудшаться — тёмная энергия станет доминирующим фактором расширения Вселенной. Она заставляет Вселенную ускоряться, и именно тут у большинства людей начинается путаница.
Варианты судьбы расширяющейся Вселенной. Обратите внимание на различия разных моделей в прошлом.
В связи с расширением Вселенной мы можем измерить две вещи: скорость расширения, и ту скорость, с которой отдельная галактика отдаляется от нас с нашей точки зрения. Эти параметры связаны, но не совпадают. Скорость расширения говорит о том, как растягивается ткань пространства-времени. Она всегда оценивается в скорости на единицу расстояния, обычно в километрах в секунду на мегапарсек, где мегапарсек — это 3,26 млн световых лет.
Как материя (вверху), излучение (в середине) и космологическая константа развиваются со временем в расширяющейся Вселенной
Если бы не было тёмной энергии, со временем скорость расширения бы падала, приближаясь к нулю, поскольку плотность материи и излучения приближалась бы к нулю с увеличением объёма. Но при наличии тёмной энергии эта скорость расширения приближается к плотности тёмной энергии, какая бы она ни была. Если тёмная энергия, к примеру, является космологической константой, тогда скорость расширения асимптотически стремится к постоянному значению. Но если так, тогда скорость отдельных галактик, отдаляющихся от нас, будет увеличиваться.
Удалённая галактика Маркарян 1018 в оптическом диапазоне с наложением радиоданных (VLT)
Представим, что скорость расширения имеет определённую величину: 50 км/с/мпк. Если галактика расположена в 20 мпк от нас, тогда с нашей точки зрения она будет удаляться от нас со скоростью в 1000 км/с. Но со временем, когда ткань пространства расширится, эта галактика окажется дальше от нас. К тому времени, как она отдалится от нас на 40 мпк, её скорость удаления от нас будет равняться уже 2000 км/с. По прошествии ещё большего времени она будет от нас в десять раз дальше — на расстоянии 200 мпк, и будет удаляться от нас уже со скоростью 10 000 км/с. Ко времени, когда она отдалится на 6000 мпк, она будет удаляться от нас со скоростью в 300 000 км/с, быстрее скорости света. Но это будет продолжаться и далее; чем больше проходит времени, тем быстрее отдаляется от нас галактика. Именно это и имеется в виду под «ускоряющейся» Вселенной: скорость расширения уменьшается, но скорость удаления отдельных галактик растёт со временем.
Композит из ультрафиолетового, видимого и инфракрасного диапазонов проекта Hubble eXtreme Deep Field. Самое большое изображение удалённых частей Вселенной.
Всё это совпадает с лучшими нашими измерениями: тёмная энергия представляет собой постоянную плотность энергии, присущую пространству. С растяжением пространства плотность тёмной энергии остаётся постоянной, и Вселенная закончит своё существование в режиме Большой заморозки, в котором всё, что не связывает гравитация (она связывает, например, нашу местную группу галактик, нашу Галактику, Солнечную систему, и т.п.) разлетится в стороны друг от друга. Если тёмная энергия на самом деле окажется космологической константой, тогда расширение будет происходить вечно, и приведёт к холодной и пустой Вселенной.
Когда астрономы впервые поняли, что Вселенная ускоряется, здравый смысл говорил, что она будет расширяться вечно. Однако пока мы не разберёмся в природе тёмной энергии получше, другие сценарии судьбы Вселенной остаются возможными. Они изображены на диаграмме: Большое сжатие, вечное расширение, Большой разрыв
Но если тёмная энергия меняется — теоретически это возможно, но не подтверждается наблюдениями — она может прийти и к Большому сжатию, и к Большому разрыву. В Большом сжатии тёмная энергия ослабится и поменяет знак, из-за чего Вселенная достигнет наибольшего размера, развернётся, и будет сжиматься. Она даже может породить цикличную Вселенную, когда сжатие порождает ещё один Большой взрыв. Если тёмная энергия будет увеличиваться, получится обратная ситуация, в которой связанные структуры в итоге будут разорваны увеличивающейся скоростью расширения. Но сегодняшние свидетельства уверенно поддерживают «Большую заморозку», в которой скорость расширения будет постоянной вечно.
Главные цели будущих обсерваторий, таких, как ike the Euclid, WFIRST, LSST включают измерения, которые подтвердят, действительно ли тёмная энергия является космологической константой. И хотя ведущая теория выступает в пользу постоянной тёмной энергии, важно рассматривать все возможности, не исключённые наблюдениями и измерениями. И пусть Большое сжатие выглядит маловероятным, его ещё не исключили. С появлением большего количества данных лучшего качества мы ещё можем обнаружить интересные намёки на то, что реальность ещё необычнее, чем большинство из нас предполагало!
Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].
Источник