Меню

Вселенная реальна или нет

Реальна ли вселенная?

Три года назад, в Американском музее естественной истории в Нью-Йорке состоялась дискуссия. Четыре физика и философ провели два часа, обсуждая, может ли реальность, быть симуляцией.

Если это так, то мы все персонажи в сгенерированном мире, настолько насыщенном данными, что это порождает само наше сознание. Это не обязательно означает, что нами манипулирует мастер-симулятор. Эта сущность могла бы установить законы природы, когда мы их воспринимаем, а затем нажать «старт», чтобы посмотреть, как все будет развиваться. Независимо от специфики, это будет означать, что наша вселенная находится или была изначально прорисована с какого-то другого плана — из фактической «базовой реальности».

Эта гипотеза не была новой в 2016 году, но кое-что о нью-йоркских дебатах было убедительным, и оно освещено в нескольких научных публикациях. Илон Маск, с тех пор утверждают, что мы, скорее всего, участвуем в симуляции. Между тем, даже если вы находите идею симуляции нелепой, вам может быть интересно услышать, как кто-то приходит к выводу, что гипотеза не просто возможна, но на самом деле правдоподобна.

В конце ночи, Тайсон попросил каждого из пяти участников дискуссии выдвинуть вероятность того, что мы находимся в симуляции. Наибольшую вероятность огласил философ, Дэвид Чалмерс из Нью-Йоркского университета, 42 процента. Макс Тегмарк, физик из Массачусетского технологического института, сказал 17 процентов, что является примерной вероятностью того, что вы получите конкретное число, которое вы хотите, когда бросаете кубик. Джим Гейтс, который сейчас работает в Университете Брауна, сказал, что 1%. Лиза Рэндалл из Гарварда, которая ранее говорила, что ей интересно, почему люди считают гипотезу симуляции интересным вопросом, говорит, что шансы на то, что она верна, «фактически равны нулю». Тайсон сказал, что «вероятность может быть очень высокой».

Единственным участником дискуссии, который не дал бы никаких шансов, была Зоре Давуди, физик-теоретик в Университете Мэриленда. «Я не могу дать вам этот ответ», — сказала она. «У меня нет никаких ответов». Ее скрытность была впечатляющей, потому что исследования Давуди больше, чем все остальные, являются основой того, насколько гипотеза симуляции может быть правдивой.

Давуди специализируется в области физики, которая стремится полностью понять природу, анализируя самые мелкие вещи. Мы знаем, что все вокруг нас имеет различные свойства, но почему? Как именно взаимодействия элементарных частиц предсказывают поведение галактик, черных дыр и химические реакции, которые позволяют мозгу управлять вашей жизнью? Один из способов выяснить это — моделировать эти взаимодействия на компьютере.

Это то, что Давуди и ее коллеги делают. Они используют сверхмощное программное обеспечение для моделирования поведения элементарных частиц в трехмерном пространстве. Из-за ограничений даже самых лучших суперкомпьютеров они моделируют очень маленькие пространства. Мы говорим о субатомных масштабах. Но это начало. В будущем появятся более совершенные компьютеры, в том числе квантовые компьютеры, которые получают энергию от необычных взаимодействий элементарных частиц. Они смогут моделировать все большие процессы.

Давуди и ее коллеги предположили, что доказательства могут быть найдены в определенных космических лучах. Это частицы с чрезвычайно высокой энергией, пронизывающие пространство. Их трудно изучать, потому что они относительно редко наблюдаются в атмосфере Земли и имеют гораздо больше энергии, чем ученые могут создать внутри огромных коллайдеров. Но если их измерить, можно рассчитать их происхождение.

Давуди сказала «это может быть признаком того, что лежащее в основе пространство и время имеет какую-то геометрию», похожую на ту, что в ее собственных моделях. Это может также помочь урегулировать давние дебаты в физике о том, являются ли пространство и время непрерывными даже в самых маленьких масштабах или составлены из дискретных, гранулированных частей и являются ли вещи пикселированными».

Если бы у космических лучей были качества, предлагаемые Давуди, они могли бы рассказать нам что-то новое о природе пространства и времени. Но это не обязательно означает, что это симуляция. «У кого-то еще может быть другое объяснение», — говорит она. «Это было бы только отправной точкой».

Давуди очень рада быть настолько неуверенной в гипотезе симуляции, что даже не рискует догадываться о вероятности ее точности. Она определенно думает, что есть шанс. Добившись успехов в симуляции крошечной части вселенной, она открыта для возможности того, что более высокий интеллект с гораздо большей вычислительной мощностью сможет симулировать все это. Вот почему она и ее коллеги написали статью в 2012 году: потому что они думали, что гипотеза моделирования заслуживает серьезного отношения. По крайней мере, по ее словам, вполне возможно, что сама вселенная на уровне фундаментальных частиц, которые появляются и исчезают, делает что-то похожее на то, что мы считаем вычислительным, даже если никакой внешний агент не запрограммировал это.

Могут потребоваться десятилетия, а может, и столетия, чтобы получить достаточно данных о космических лучах или других аспектах Вселенной, чтобы иметь что-либо, что может считаться доказательством идеи симуляции.

Гипотеза симуляции — слишком удобная метафора, объяснения вселенной. У Сильвестра Джеймса Гейтса есть идея, которая намекает на такой исход.

На этой стадии дебатов в Нью-Йорке в 2016 году Гейтс почти отверг идею симуляции (шанс 1%). Но то, что он сказал в начале, казалось, подразумевало обратное. Он сказал, что нашел «коды с исправлением ошибок» в уравнениях физики.

«Коды исправления ошибок — это то, что заставляет браузеры работать», — сказал Гейтс аудитории. «Так почему же они были в уравнениях, которые я изучал?» Гейтс не одинок. Другие исследователи нашли подобные атрибуты в уравнениях для квантовой механики. Что происходит?

Существует фантастическое объяснение ложного вакуума на YouTube (7,5 миллиона просмотров!), Но вот очень короткая версия: уравнения, полученные в 1960-х годах, которые предсказывали существование фундаментальной частицы, называемой бозоном Хиггса (который затем наблюдался в 2012 году), также указал, что «вся вселенная могла бы исчезнуть», как выразился Гейтс. Если это правда, добавляет он, наличие кодов, исправляющих ошибки, в уравнениях суперсимметрии может указывать на то, что «Вселенная подверглась некоторому процессу, который привел к защите от этого распада».

Все это основано на предположениях. Возможно, самое важное в том, что мы, умные обезьяны, в конечном итоге можем полностью обернуть свои мысли вокруг сущности вселенной. Думая о вселенной, как о части видеоигры или какой-либо другой компьютерной программы, мы подразумеваем одно из предположений в длинной цепочке метафор, сформированных доминирующей технологией времени.

Источник: журналист из Бостона Brian Bergstein

Источник

Ученые: Вселенная — это компьютерная программа

Современная гипотеза об устройстве мироздания гласит, что весь наш мир — это не более чем матрица, виртуальная реальность, созданная неизвестной формой разума. Недавно инженер, специалист в области цифровых технологий Джим Элвидж обнаружил признаки того, что Вселенная действительно является компьютерной программой, работающей на основе цифрового кода.

Так, всем известно определение материи как «объективной реальности, данной нам в ощущениях». Получается, что, прикасаясь к различным предметам, мы судим о них по ощущениям, которые испытываем в этот момент. А ведь на самом деле большинство объектов представляют собой не более чем пустое пространство, говорит Элвидж. Это подобно тому, как мы «кликаем» на иконки на экране компьютера. За каждой иконкой скрывается какой-то образ, но все это — лишь условная реальность, матрица, которая существует только на мониторе.

Все, что мы считаем материей, это просто данные, полагает Элвидж. Дальнейшие исследования в области элементарных частиц приведут к пониманию того, что за всем, что нас окружает, скрывается некий код, аналогичный бинарному коду компьютерной программы. Возможно, выяснится, что наш мозг — это просто интерфейс, с помощью которого мы получаем доступ к данным «вселенского интернета».

Читайте также:  Филип фармер создатель вселенных аудиокнига

В своих высказываниях ученый ссылается на книгу Джона Арчибальда Уилера «Геоны, черные дыры и квантовая пена: жизнь в физике». Последний считал, что основу физики составляет информация. Он назвал свою теорию «It from bit» («Все из бита»). «»Всё из бита» символизирует идею, что всякий предмет и событие физического мира имеет в своей основе — в большинстве случаев, в весьма глубокой основе — нематериальный источник и объяснение; что-то, что мы называем реальностью, вырастает в конечном счете из постановки «да-или-нет» — вопросов и регистрации ответов на них при помощи аппаратуры, — пишет Уилер в своем докладе «Информация, физика, квант: поиск связей»; — коротко говоря, все физические сущности в своей основе являются информационно-теоретическими, и Вселенная требует нашего участия».

Именно благодаря бинарному коду мы можем осуществлять выбор между различными вариантами цифровой реальности, матрицы, управлять ею при помощи сознания. Этот виртуальный мир Уилер называет «Вселенной соучастия».

Косвенным доказательством виртуальной природы Вселенной может служить то, что частицы материи могут существовать в неопределенной или неустойчивой форме и «закрепляются» в конкретном состоянии только при наблюдении.

Элвидж, в свою очередь, предлагает провести следующий мысленный эксперимент. Представьте, что все вещи, которые вас окружают, не более чем цифровая реальность, матрица. Но, скажем, ручка становится ручкой, только когда вы смотрите на нее, причем вы способны идентифицировать предмет как ручку только по внешним признакам. В остальном она обладает неопределенным потенциалом, и если вы разберете ее, то получите дополнительные данные, связанные с ее внутренним устройством.

Функция нашего мозга — обрабатывать информацию. Последняя способна храниться в нем, подобно тому как компьютерный браузер сохраняет в кэш данные посещенных нами сайтов во время интернет-серфинга. Если это так, считает Элвидж, то мы можем получать доступ и к данным, которые хранятся за пределами нашего мозга. Поэтому такие вещи, как интуиция или ясновидение, вовсе не пустой звук. Мы можем получать в «космическом интернете» ответы на свои запросы. Также мы можем попросить о помощи, и она может прийти — от других людей или создателей нашей реальности…

Смерть в этом ключе тоже выглядит не такой уж страшной. Если наше сознание это симуляция, то смерть всего лишь прерывание симуляции. И наше сознание вполне могут вселить в другой «симулятор», что и объясняет феномен реинкарнации.

Теория о цифровой реальности, матрице может послужить универсальным ключом к «теории всего», поисками которой уже давно занимаются ученые и которая помогла бы разрешить противоречия между классической и квантовой физикой. По мнению Элвиджа, могут существовать два вида данных, используемых в этой реальности. Это данные, связанные с описаниями объектов, аналогичные графическому или звуковому компьютерному формату, и данные, отвечающие за работу всей системы.

Наше знание об окружающем мире постоянно растет, добавляет исследователь. Ведь когда-то обособленно живущие племена не знали о существовании других земель, континентов, планет… Постепенно мы пришли к понятию о материальной Вселенной, наполненной различными объектами, а теперь близки к тому, чтобы допустить существование вселенных, состоящих из информации. «Мы постоянно раздвигаем границы нашего мышления», — утверждает Элвидж.

Источник

10 причин того, что наша Вселенная — виртуальная реальность

Физический реализм — это взгляд, согласно которому физический мир, который мы видим, реален и существует сам по себе. Большинство людей думают, что это само собой разумеется, но с некоторых пор физическому реализму серьезно противоречат некоторые факты из мира физики. Парадоксы, которые сбивали с толку физиков прошлого века, до сих пор не разрешены, и многообещающие теории струн и суперсимметрии никуда этот воз пока не привезли.

В противовес этому, квантовая теория работает, но квантовые волны, которые запутываются, оказываются в состоянии суперпозиции, а затем коллапсируют, кажутся физически невозможными — они кажутся «мнимыми». Все это выливается в интересную картину: теория того, что не существует, эффективно предсказывает то, что существует — но как может нереальное предсказывать реальное?

Квантовый реализм — это противоположная точка зрения, согласно которой квантовый мир реален и создает физический мир как виртуальную реальность. Квантовая механика, таким образом, предсказывает эффекты физической механики, потому что является ее причиной. Физики говорят, что считать, что квантовые состояния не существуют, это как «не обращать внимания на вон того человека за занавеской».

Квантовый реализм — это не «матрица», в которой другой мир, создавший наш, будет физическим. И это не идея мозга-в-чане, поскольку эта виртуальность была задолго до того, как появился человек. И это не фантомный другой мир, который влияет на наш: наш физический мир — фантом сам по себе. В физическом реализме квантовый мир не существует, но в квантовом реализме физический мир невозможен — если это только не виртуальная реальность. И вот возможные объяснения.

Появление Вселенной

Все слышали о Большом Взрыве, но если физическая Вселенная перед нами, как она началась? Завершенная Вселенная не должна изменяться вообще, поскольку ей некуда идти и неоткуда прийти, и ничто не может ее изменить. Тем не менее в 1929 году астроном Эдвин Хаббл обнаружил, что все галактики расширяются в сторону от нас, что привело к мысли о Большом Взрыве, который случился в точке пространства-времени порядка 14 миллиардов лет назад. Открытие космического микроволнового фона (который можно увидеть в виде белого шума на экране телевизора) подтвердило, что наша Вселенная не только началась в точке, но и пространство, и время появились вместе с ней.

Итак, когда Вселенная появилась, она уже существовала до своего создания, что невозможно, или была создана чем-то еще. Не может быть такого, чтобы целая, полная и цельная Вселенная появилась сама по себе из ничего. Тем не менее в эту странную идею верит большинство физиков сегодняшнего дня. Они полагают, что первым событием была квантовая флуктуация в вакууме (в квантовой механике пары частиц и античастиц появляются и исчезают повсюду, то есть абсолютной пустоты не существует). Но если материя просто появилась из пространства, откуда появилось пространство? Как квантовая флуктуация в пространстве могла создать пространство? Как могло время начать идти само по себе?

Квантовый реализм

Каждая виртуальная реальность начинается с первого события, вместе с которым появляется и пространство, и время. С такой точки зрения, Большой Взрыв произошел, когда наша физическая Вселенная загрузилась, включая ее операционную систему пространства-времени. Квантовый реализм предполагает, что Большой Взрыв был в действительности Большим Пуском.

У нашей Вселенной есть максимальная скорость

Эйнштейн пришел к выводу, что ничто не может двигаться быстрее, чем свет в вакууме, и со временем это стало универсальной константой, однако, до конца неясно, почему так. Грубо говоря, любое объяснение сводится к тому, что «скорость света постоянна и предельна, потому что вот так вот». Потому что не может быть ничего прямее прямой.

Но ответ на вопрос «почему вещи не могут двигаться быстрее и еще быстрее», который звучит как «потому что не могут», едва ли можно назвать удовлетворительным. Свет замедляется (преломляется) водой или стеклом, и когда он движется в воде, мы говорим, что его средой является вода, когда в стекле — стекло, но когда он движется в пустом пространстве, мы молчим. Как может волна вибрировать в пустоте? Нет никакого физического фундамента для движения света по безвоздушному пространству, не говоря уж об определении максимально возможной скорости.

Читайте также:  Если парень тебя называет моя вселенная

Квантовый реализм

Если физический мир — это виртуальная реальность, то скорость света — это продукт обработки информации. Информация определяется как выборка из конечного множества, поэтому ее обработка тоже должна осуществляться с конечной скоростью, а значит, наш мир обновляется с конечной скоростью. Условный процессор суперкомпьютера обновляется 10 квадриллионов раз в секунду, а наша Вселенная обновляется в триллионы раз быстрее, но принципы в основном те же. И если изображение на экране обладает пикселями и частотой обновления, в нашем мире есть планковская длина и планковское время.

В таком случае скорость света будет предельной, потому что сеть не может передавать ничего быстрее, чем один пиксель за цикл, то есть, планковская длина за единицу планковского времени, или порядка 300 000 километров в секунду. Скорость света в действительности должна называться скоростью космоса (пространства).

Наше время весьма податливо

В эйнштейновском парадоксе близнецов один из них путешествует на ракете почти со скоростью света и возвращается через год, чтобы обнаружить, что его брат-близнец — восьмидесятилетний старик. Никто из них не знал, что их время идет по-разному, и все остались живы, но жизнь одного подходит к концу, а другого — только начинается. В объективной реальности это кажется невозможным, но время для частиц в ускорителях действительно замедляется. В 1970-х ученые запустили вокруг мира атомные часы на самолете, чтобы подтвердить, что те тикают медленнее, чем синхронизированные с ними изначально часы на земле. Но как время, судья всех изменений, само может быть подвержено изменениям?

Квантовый реализм

Виртуальная реальность зависит от виртуального времени, где каждый цикл обработки является одним «тиком». Каждый геймер знает, что когда компьютер подвисает вследствие лага, игровое время тоже немного замедляется. Точно так же время в нашем мире замедляется с ростом скорости или рядом с массивными объектами, что свидетельствует о виртуальности. Близнец на ракете постарел только на год, потому что все циклы обработки его системы подвисли в целях экономии. Изменилось только его виртуальное время.

Наше пространство искривляется

Согласно общей теории относительности Эйнштейна, Солнце удерживает Землю на орбите за счет искривленного пространства, но как пространство может искривляться? В пространстве, по определению, происходит движение, поэтому, чтобы оно искривилось, оно должно существовать в другом пространстве, и так до бесконечности. Если материя существует в пространстве пустоты, ничто не может сдвинуть или искривить это пространство.

Квантовый реализм

В режиме «простоя» компьютер на самом деле не простаивает, а выполняет нулевую программу, и наше пространство может делать то же самое. Эффект Казимира проявляется, когда вакуум пространства оказывает давление на две пластины, которые расположены близко друг к другу. Современная физика утверждает, что это давление вызывают виртуальные частицы, которые возникают ниоткуда, но в квантовом реализме пустое пространство заполнено обработкой, которая вызывает тот же эффект. И пространство, как обрабатывающая сеть, может представлять трехмерную поверхность, способную искривляться.

Случайности случаются

В квантовой теории квантовый коллапс является случайным, к примеру, радиоактивный атом может испустить фотон, когда ему вздумается. Классическая физика не объясняет случайность событий. Квантовая теория объясняет физическое событие «коллапсом волновой функции», поэтому в каждом физическом событии есть элемент случайности.

Чтобы предотвратить угрозу этого первенства физической причинности, в 1957 году Хью Эверетт предложил многомировую теорию, непроверяемую идею того, что каждый квантовый выбор порождает новую вселенную, поэтому каждый вариант события происходит где-то в новой «множественной вселенной» (multiverse). К примеру, если вы выбрали бутерброды на завтрак, природа создает другую вселенную, в которой вы завтракаете персиками и йогуртом. Изначально к многомировой интерпретации относились со смехом, но сегодня физики все чаще предпочитают именно эту теорию другим, чтобы развеять кошмар случайностей.

Тем не менее, если квантовые события создают новые вселенные, несложно догадаться, что вселенные будут накапливаться со скоростью, которая выходит за рамки любых понятий о бесконечности. Многомировая фантазия не просто обходит стороной бритву Оккама, но еще и надругается над ней. К тому же множественная вселенная — это реинкарнация другой старой сказки о заводной вселенной (clockwork universe), которую квантовая теория развенчала в прошлом веке. Ложные теории не умирают, они превращаются в теории-зомби.

Квантовый реализм

Процессор в онлайн-игре может генерировать случайное значение, и наш мир — тоже. Квантовые события случайны, поскольку связаны с клиент-серверными действиями, к которым у нас нет доступа. Квантовая случайность кажется бессмысленной, но играет такую же роль в эволюции материи, какую генетическая случайность сыграла в биологической эволюции.

Антиматерия существует

Антиматерия относится к субатомным частицам, соответствующим электронам, протонам и нейтронам обычной материи, но с противоположным электрическим зарядом и другими свойствами. В нашей Вселенной отрицательные электроны вращаются вокруг положительных атомных ядер. Во вселенной антиматерии положительные электроны вращались бы вокруг отрицательных ядер, но жителям этой вселенной казалось бы, что с физическими законами все в порядке. Материя и антиматерия аннигилируют при контакте, то есть взаимно уничтожаются.

Уравнения Поля Дирака предсказали антиматерию задолго до ее обнаружения, но до конца не было ясно, как что-то, аннигилирующее материю, вообще возможно. Диаграмма Фейнмана встречи электрона с антиэлектроном показывает, что последний, сталкиваясь, возвращается назад во времени! Как это часто бывает в современной физике, это уравнение работает, но его последствия не имеют никакого смысла. Материи не нужен антипод, а обратный ход времени подрывает причинно-следственные основы физики. Антиматерия — это одна из самых загадочных находок современной физики.

Квантовый реализм

Если материя — это результат обработки, и обработка устанавливает последовательность значений, следует, что эти значения можно обратить вспять, получив, таким образом, антиобработку. В таком свете антиматерия — это неизбежный побочный продукт материи, созданной в процессе обработки. Если время — это завершение первичных циклов обработки материи, для антиматерии оно будет завершением вторичных циклов, а значит, оно будет идти в обратном направлении. У материи есть антипод, потому что процесс обработки, который ее создает, является обратимым, и антивремя существует по той же причине. Только виртуальное время может идти вспять.

Эксперимент с двумя щелями

Физический реализм

Более 200 лет назад Томас Юнг провел эксперимент, который до сих пор ставит в тупик физиков: пропустил свет через две параллельные щели, чтобы получить интерференционную картину на экране. Только волны могут делать это, поэтому частица света (даже один фотон) должна быть волной. Но свет может попасть на экране и в виде точки, что может произойти только в том случае, если фотон — частица.

Чтобы проверить это, физики отправили один фотон через щели Юнга. Один фотон выдал ожидаемую точку попадания частицы, но вскоре точки выстроились в интерференционную картину. Эффект не зависит от времени: один фотон, проходящий через щели, каждый год выдает одну и ту же картину. Ни один фотон не знает, где попал предыдущий, так как же появляется интерференционная картина? Детекторы, размещенные на каждой щели, только впустую потратили время — фотон проходит либо через одну щель, либо через другую, никогда — через обе. Природа издевается над нами: когда мы не смотрим, фотон — волна, когда смотрим — частица.

Читайте также:  По ту сторону вселенной ирина антонова

Современная физика называет эту загадку корпускулярно-волновым дуализмом, «глубоко странным» явлением, объяснимым только эзотерическими уравнениями несуществующих волн. Тем не менее мы, здравомыслящие люди, знаем, что точечные частицы не могут распространяться подобно волнам, а волны не могут быть частицами.

Квантовый реализм

Квантовая теория объясняет эксперимент Юнга вымышленными волнами, которые проходят через обе щели, интерферируют, а затем коллапсируют в точку на экране. Это работает, но волны, которые не существуют, не могут объяснить того, что существует. В квантовом реализме программа фотона может распространяться в сети как волна, а затем начинать сначала, когда узел перегружается и перезагружается, как частица. То, что мы называем физической реальностью, является рядом перезагрузок, объясняющих и квантовые волны, и квантовый коллапс.

Темная энергия и темная материя

Современная физики описывает материю, которую мы видим, но во Вселенной также есть в пять раз больше того, что называют темной материей. Ее можно обнаружить как ореол вокруг черной дыры в центре нашей галактики, который связывает звезды вместе более прочно, чем может позволить их гравитация. Это не материя, которую мы можем увидеть, потому что свет ее не берет; это не антиматерия, поскольку у нее нет сигнатуры гамма-излучения; это не черная дыра, потому что нет эффекта гравитационного линзирования — но без темной материи звезды в нашей галактике разлетелись бы прочь.

Ни одна из известных частиц не описывает темную материю — предлагались гипотетические частицы, известные как слабо взаимодействующие массивные частицы (WIMP, или «вимпы»), но ни одну из них так и не нашли, несмотря на тщательные поиски. В дополнение к этому, 70% Вселенной представлено темной энергией, которую физика также не может объяснить. Темная энергия — это своего рода отрицательная гравитация, слабый эффект, который расталкивает вещи, ускоряя расширение Вселенной. Оно не сильно изменяется со временем, но что-то плавающее в расширяющемся пространстве со временем должно ослабевать. Если бы это было свойством пространства, оно бы увеличивалось с расширением пространства. На данный момент никто не имеет ни малейшего понятия о том, что такое темная энергия.

Квантовый реализм

Если пустое пространство — это нулевая обработка, «спящий режим», тогда оно не пустое, и если оно расширяется, то пустое пространство постоянно добавляется. Новые точки обработки, по определению, принимают ввод, но не дают никакого вывода. Таким образом, они поглощают, но не излучают, в точности как негативный эффект, который мы называем темной энергией. Если новое пространство добавляется с постоянной скоростью, эффект не будет сильно изменяться со временем, поэтому темная энергия обусловлена продолжающимся созданием пространства. Квантовый реализм предполагает, что частицы, которые могут объяснить темную энергию и темную материю, не будут обнаружены.

Туннелирующие электроны

В нашем мире электрон может внезапно выскочить за пределы гауссова поля, через которое не может проникнуть. Это можно сравнить с монетой в совершенно закрытой стеклянной бутылке, которая внезапно появляется за ее пределами. В сугубо физическом мире это попросту невозможно, но в нашем — вполне.

Квантовый реализм

Квантовая теория предполагает, что электрон должен случайно проделывать вышеописанное, потому что квантовая волна может распространяться вне зависимости от физических барьеров, и электрон может внезапно коллапсировать в любой ее точке. Каждый коллапс — это кадр фильма, который мы называем физической реальностью, за исключением того, что следующий кадр не фиксирован, а базируется на вероятностях. Электрон, «туннелирующий» через непроходимое поле — это как фильм, который скрывает от взгляда, как актер выходит из дома наружу.

Это может показаться странным, но телепортация из одного состояния в другое — это то, как движется вся квантовая материя. Мы видим физический мир, который существует независимо от нашего наблюдения, но в квантовой теории эффект наблюдателя описывает эффект игрового вида: когда вы смотрите налево, создается один вид, когда направо — другой. В теории Бома призрачная квантовая волна направляет электрон, но в теории, которую мы рассматриваем, электрон и является этой призрачной волной. Квантовый реализм разрешает квантовый парадокс, делая квантовый мир реальным, а физический мир — его продуктом.

Квантовая запутанность

Если атом цезия испускает два фотона в разных направлениях, квантовая теория «запутывает» их, так что если один вертится снизу вверх, другой — сверху вниз. Но если один случайно переворачивается, как другой может мгновенно узнать об этом, на любом расстоянии? Для Эйнштейна открытие того, что измерение спина одного фотона мгновенно определяет спин другого, где бы тот ни был во Вселенной, было «жутким действием на расстоянии». Экспериментальная проверка этого стала одним из самых тщательных и точных экспериментов вообще в истории науки, и квантовая теория снова оказалась права. Наблюдение за одним запутанным фотоном приводит к тому, что другой получает противоположный спин — даже если они слишком далеки даже для того, чтобы световой сигнал успел их об этом оповестить. Природа могла бы сделать так, что спин одного фотона был бы верхним, а другого — нижним, с самого старта, но это, видимо, было слишком сложно. Поэтому она позволила спину одного выбирать любое случайное направление, так что когда мы его измеряем и определяем одно, спин другого фотона тут же меняется на противоположный, хотя это кажется физически невозможным.

Квантовый реализм

С этой точки зрения два фотона запутываются, когда их программы объединяются для совместного ведения двух точек. Если одна программа отвечает за верхний спин, а другая за нижний, их объединение будет отвечать за оба пикселя, где бы те ни были. Физическое событие у каждого пикселя случайным образом перезапускает программу, другая программа реагирует на это соответствующим образом. Этот код перераспределения игнорирует расстояния, потому что процессору не нужно ходить к пикселю, чтобы попросить его перевернуться, даже если экран большой, как сама Вселенная.

Стандартная модель физики включает 61 фундаментальную частицу с установленными параметрами заряда и массы. Если бы она была машиной, у нее было бы несколько десятков рычагов для запуска каждой частицы. Также ей понадобилось бы пять невидимых полей, которые порождают 14 виртуальных частиц с 16 разными «зарядами» для работы. Возможно, вам кажется полным этот набор, но Стандартная модель не может объяснить гравитацию, стабильность протона, антиматерию, изменения кварков, массу нейтрино или его спин, инфляцию или квантовую случайность — и это очень важные вопросы. Не говоря уж о частицах темной материи и темной энергии, из которых состоит большая часть Вселенной.

Квантовый реализм по-новому интерпретирует уравнения квантовой теории в терминах одной сети и одной программы. Его основное допущение в том, что физический мир — это вывод обработки, но это не умаляет его реальности — просто мы его не видим. Теория предполагает, что материя появилась из света как стабильная квантовая волна, а значит квантовый реализм предполагает, что свет в вакууме может порождать материю при столкновении. Стандартная модель утверждает, что фотоны не могут сталкиваться, поэтому необходим кардинальный экспериментальный подход для проверки виртуальной реальности нашего мира. Когда свет в вакууме породит материю при столкновении, модель элементарных частиц заменится моделью информационной обработки.

Для справки: Брайан Уитворт, создатель теории квантового реализма, оставил подробный путеводитель по терминам, поэтому если у вас будут вопросы — задавайте, постараюсь ответить по его материалам.

Источник

Adblock
detector