Меню

Вселенная слияние черных дыр

Что происходит при столкновении черных дыр

Если столкнуться две черные дыры — они взаимно уничтожат друг друга или сольются в один объект?

Что будет если столкнуться две галактики?

Столкновения галактик – вроде бы давно смоделированное и даже наблюдаемое в астрономии явление. В отличие от картины рисуемой фантастами – такое “столкновение миров”, судя по всему проходит без особого ущерба для этих самых “миров” – звезд и планет населяющих столкнувшиеся галактики.

Все дело в том, что галактики лишь со стороны кажутся плотно “набитыми” звездами – на деле звезды встречаются в космическом пространстве примерно с такой же частотой, что была бы, выложи мы на каждый квадратный километр земной поверхности по песчинке. Иными словами – шанс на столкновение отдельных звезд внутри сталкивающихся галактик очень мал.

Столкновение галактик NGC 5426 и NGC 5427. На данный момент галактики только “зацепились” рукавами и их ядра – черные дыры, далеки от столкновения. В будущем эта картина изменится.

Но если со звездами все понятно, как быть с космическими объектами принципиально иного масштаба. Например – сверхмассивных черных дыр находящихся в центрах галактик и буквально “удерживающих” всю галактику в виде единого звездного образования своей гравитацией?

В сущности вариантов при таком столкновении только два: черные дыры – бывшие ядра обеих столкнувшихся галактик либо объединятся в одну “сверх черную дыру”, либо навечно “привяжутся” друг к другу и начнут “перетягивание материи на себя”, и в конечном итоге, та из черных дыр, что окажется “чернее”, просто проглотит конкурента.

Столкновение черных дыр в космосе

Астрономы ранее высказывали предположение, что при столкновении галактик черные дыры, находящиеся в их центрах, с высокой вероятностью, все же будут сливаться, а не “противостоять” друг другу. Компьютерные модели также подтверждает именно этот вариант развития событий и даже позволяют предсказать их вероятность: не менее одного слияния в отдельно взятой вселенной, за отдельно взятый земной год!

Как рассчитываются эти модели? Началось все с наблюдений за поведением потоков энергии в галактических ядрах. Было замечено, что некоторые галактики выбрасывают потоки энергии в двух противоположных направлениях вдоль оси вращения. Предполагается, что эти потоки возникают под воздействием черных дыр, которые нельзя увидеть непосредственно. Исследуя галактики с помощью радиотелескопа, ученые обнаружили, что у 7% галактик наблюдается внезапный сдвиг в направлении энергетических потоков. Изменение направления потоков свидетельствует о нарушении равновесия в галактической системе.

Парадоксально – самая яркая часть ядра галактики, это… черная дыра! Точнее область раскаленного газа непосредственно вокруг черной дыры

Новая модель показывает, каким образом перестраиваются галактические потоки и подтверждает, что взаимное притяжение черных дыр заканчивается их слиянием, а не бесконечным вращением вокруг друг друга.

Моделирование показало, что при слиянии крупных галактик, черные дыры смещаются к центру объединенной галактики. Но, приближаясь к центру, черные дыры будут вытеснять близлежащие звезды, разрушая тем самым механизм их взаимного притяжения.

Ученые пока не могут объяснить, что притягивает черные дыры друг к другу после того, как они лишаются своего окружения. Но когда расстояние между ними уменьшается до размера солнечной системы, черные дыры начинают испускать энергию в виде гравитационных волн. Затем они начинают неуклонно скользить навстречу, все быстрее и быстрее закручиваясь в спираль. Финальное слияние вызывает сильнейший выброс гравитационной энергии.

Исследование галактик, испускающих гравитационные потоки, позволяет предположить, что подобные гигантские столкновения происходят в окружающей нас вселенной примерно раз в год.

Может ли одна черная дыра “вытолкнуть” другую?

Когда две галактики сталкиваются, их чёрные дыры должны слиться. Согласно теории относительности, в результате этого события должен произойти сильный всплеск гравитационной активности, который возмутит пространство-время. Если же этот всплеск произойдёт под определённым углом, то он подействует на новообразованную чёрную дыру так, что та просто вылетит из своей галактики!

И теоретические вычисления показали, что такое событие будет происходить в одном из десяти случаев – то есть очень часто, в масштабах космоса. При этом скорость таких чёрных дыр составит более 1000 километров в секунду, что вполне достаточно для того, чтобы они вышли в межгалактическое пространство, а их галактика без мощного источника “центробежной силы” просто развалилась бы на куски.

Наблюдателям, однако, до сих пор так и не удалось заметить как подобного явления, так и галактики с “выбитой” чёрной дырой. Теперь же Тамара Брегович и Кристофер Рейнольдс из Университета Мэриленда в Колледж Парк (США) говорят, что соединившиеся галактики удерживают свои чёрные дыры благодаря механизмам, сдерживающим гравитационный удар.

Сила его зависит от того, как они обращаются вокруг своей оси. Если их оси вращения лежат параллельно орбите, по которой они обращаются вокруг друг друга, то удар будет сильным, если же перпендикулярно, то он будет слабым. Когда слияние галактик начинается, оси вращения чёрных дыр, принимающих участие в процессе, вероятнее всего, расположены под случайным наклоном.

По словам учёных, им удалось обнаружить механизм, благодаря которому оси вращения этих космических объектов выравниваются. Вокруг этих двух чёрных дыр образуется гигантский газовый диск, лежащий примерно в той же плоскости, что и их орбита. Каждая из них забирает часть материи из этого диска для своего аккреционного диска.

Читайте также:  Если есть разумная жизнь во вселенной то какая она

Примерно через один миллион лет сила притяжения большого диска выравнивает наклон аккреционных дисков. Таким образом, обе чёрные дыры начинают обращаться вокруг своей оси перпендикулярно диску и, соответственно, плоскости вращения относительно друг друга. В результате, гравитационный удар оказывается недостаточно сильным. Однако, исследователи не отрицают, что могут существовать и старые галактики, газовые диски которых настолько маломассивны, что им не удастся повлиять на наклон оси вращения чёрных дыр.

Источник

В черных дырах могут быть вселенные. Рассказываем о новом открытии

Астрофизики показали, что в заряженных черных дырах теоретически могут существовать экзотические фрактальные объекты и множество других необычных вещей. Разбираемся, что мы вообще знаем о черных дырах теперь.

Что такое черные дыры?

Черные дыры — массивные космические объекты. Увидеть их почти невозможно, поскольку они не отражают свет, даже, наоборот, поглощают его в прямом смысле слова. Их сила притяжения настолько велика, что даже лучи света не могут устоять, и они попадают под влияние дыры. Поэтому вокруг нее «изображение» космоса нам кажется расплывчатым и искаженным. Это видно на картинке выше.

Черные дыры — не черные шары, какими мы привыкли видеть их. Они прозрачные, но оставляют черную тень. Это даже не дыра, а шарообразный поглотитель всего, что попадает под влияние его гравитации.

Как возникают черные дыры?

Звезды, превышающие массу и размеры нашего Солнца во много раз, в конце своей жизни взрываются и образуют либо нейтронную звезду, либо начинают сильно сжиматься, словно «падая» внутрь себя, стремительно уменьшая свои размеры при неизменной массе. Плотность материи в сжимаемой точке становится очень высокой, соответственно, гравитация сильно увеличивается. Когда размер звезды становится настолько мал и плотность настолько высока в одном месте, она «проваливается» внутрь себя, в результате чего появляется черная дыра.

Черная дыра, например, массой с одно Солнце будет по размеру меньше, чем наше светило.

Однако такие маленькие звезды, как наше Солнце, не превратятся в конце жизненного цикла в черную дыру — их масса недостаточна даже для взрыва и образования сверхновой. Взрыв, конечно, будет, однако на финальном этапе маленькие звезды превращаются в белых карликов — в очень маленькие и горячие звездочки, которые тоже вскоре затухнут.

В настоящее время мы знаем о четырех разных способах образования черных дыр

  • Лучше всего изучен тот, что связан со звездным коллапсом. Достаточно большая звезда образует черную дыру после того, как ее ядерный синтез прекращается, потому что все, что уже можно было синтезировать, было синтезировано. Когда давление, создаваемое синтезом, прекращается, вещество начинает проваливаться к собственному гравитационному центру, становясь все более плотным. В конце концов оно настолько уплотняется, что ничто не может преодолеть гравитационное воздействие на поверхность звезды: так рождается черная дыра. Эти черные дыры называются «черными дырами солнечной массы», и они наиболее распространены.
  • Следующим распространенным типом черных дыр являются «сверхмассивные черные дыры», которые можно найти в центрах многих галактик и которые имеют массы примерно в миллиард раз больше, чем черные дыры солнечной массы. Пока доподлинно неизвестно, как именно они формируются. Считается, что когда-то они начинались как черные дыры солнечной массы, которые в густонаселенных галактических центрах поглощали множество других звезд и росли. Тем не менее, они, похоже, поглощают вещество быстрее, чем предполагает эта простая идея, и как именно они это делают — все еще остается предметом исследований.
  • Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.
  • Наконец, есть идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.

Насколько большие черные дыры?

Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра.

По сравнению со звездными объектами, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров. Это в 10 000 000 000 раз меньше настоящего радиуса Земли.

Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.

Читайте также:  Как устроена вселенная по видам

Где находятся черные дыры?

Чаще всего они расположены в центре галактик. Они имеют большую силу притяжения, благодаря чему им удается удерживать звездные системы на очень большом расстоянии, образуя галактики, известные нам сейчас.

В центре нашего Млечного пути тоже есть сверхмассивная черная дыра под названием Стрелец А*. Она тяжелее Солнца в 4.02 млн раза, а радиус ее ≈ 45 астрономическим единицам (одна астрономическая единица = одному расстоянию от Земли до Солнца).

Помимо сверхмассивных черных дыр в центрах галактики есть и «локальные», образующиеся после кончины массивных звезд.

Что внутри черной дыры?

Никто не знает наверняка. Общая теория относительности прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, то уже не можете попасть куда-либо еще, кроме как в сингулярность. Соответственно, общую теорию относительности лучше не использовать в этих местах — она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнано, что эта теория заменит сингулярность чем-то другим.

Почему внутри черной дыры могут быть вселенные?

Существует множество гипотетических черных дыр — с электрическим зарядом или без него, вращающиеся или неподвижные, окруженные материей или плавающие в пустом пространстве. Некоторые из этих гипотетических черных дыр наверняка существуют в нашей Вселенной. Например, вращающаяся черная дыра, окруженная падающей материей — довольно распространенный тип этих объектов.

Но некоторые другие виды черных дыр являются чисто теоретическими. Описать их поведение и свойства можно, полагаясь только на математические методы. Одним из таких объектов является электрически заряженная черная дыра, окруженная антидеситтеровским пространством. Этот вид пространства имеет постоянную отрицательную геометрическую кривизну и похож по форме на седло.

Такого пространства в нашей Вселенной не существует, но его существование в теории открывает множество интересных эффектов, которые можно исследовать. Одна из причин, по которой это стоит исследовать, заключается в том, что заряженные черные дыры имеют много общего с вращающимися черными дырами, существующими в нашей Вселенной.

Авторы нового исследования обнаружили, что когда такие черные дыры становятся относительно холодными, они создают «туман» из квантовых полей вокруг своей поверхности. На поверхности объекта этот туман поддерживает гравитация черной дыры, но выталкивает наружу электрическое поле. В результате в таком тумане формируется сверхпроводящая среда. У таких черных дыр помимо обычного горизонта событий есть еще и внутренний горизонт. Благодаря этому в заряженные черные дыры можно проникнуть и не разорваться на атомы.

Ученые показали, что по ту сторону заряженной черной дыры вас могут ждать загадочные эффекты. Исследователи обнаружили, что самые внутренние области сверхпроводящей черной дыры могут представлять собой расширяющуюся Вселенную — место, где пространство может растягиваться и деформироваться с разной скоростью в разных направлениях.

Более того, в зависимости от температуры черной дыры в некоторых из этих областей пространства может произойти новый виток колебаний, который затем создаст еще один участок расширяющегося пространства, он вызовет новый виток колебаний, который затем создаст новый участок расширяющегося пространства, и так далее до бесконечности. Это будет фрактальная мини-Вселенная, бесконечно повторяющаяся с уменьшением размеров.

Источник

Физики обнаружили слияние черных дыр, которые не должны существовать

Семь миллиардов лет назад, где-то на краю Вселенной, произошло столкновение двух гигантских темных объектов. Это событие проливает свет на невидимый процесс ускоряющегося расширения Вселенной: вибрируя в пространстве-времени две сверхмассивные черные дыры произвели громкий, резко обрывающийся звук. Сигнал длился десятую долю секунды, однако этого оказалось достаточно, чтобы детекторы интерферометрической гравитационно-волновой обсерватории LIGO и интерферометрической обсерватории VIRGO зафиксировали его. Как пишут авторы новых исследований, короткий сигнал из далекой галактики вызывает много вопросов, особенно в областях, касающихся формирования и эволюции черных дыр. Одна, а возможно обе столкнувшиеся дыры были слишком массивными и не могли образоваться в результате коллапса нейтронных звезд. Более того, слияние породило еще более крупную черную дыру, чья масса в 142 раза превосходит массу Солнца и, согласно стандартным моделям, не должна существовать. Но как такое возможно?

Моделирование слияния черных дыр выглядит так

Аномальные черные дыры

Предсказанные Альбертом Эйнштейном черные дыры – это массивные объекты, гравитационное притяжение которых настолько велико, что даже фотоны света не могут их покинуть. Существование этих таинственных объектов удалось доказать в 2015 году, после того, как обсерватории LIGO и VIRGO зафиксировали гравитационные волны — рябь пространства-времени, появившаяся в результате столкновения двух сверхмассивных черных дыр. Подробнее об открытии, которое принесло основателям LIGO Нобелевскую премию по физике читайте в материале моего коллеги Артема Сутягина.

Большинство известных черных дыр – это мертвые массивные звезды, которые коллапсировали в объекты в несколько раз массивнее Солнца. Но внутри галактик находятся черные дыры в миллионы или миллиарды раз более массивные, чем наша родная звезда. Как эти объекты смогли вырасти до таких размеров – извечная загадка астрономии.

Читайте также:  Вселенная как расширение вакуума

В конце своей жизни, когда у звезд заканчивается ядерное топливо и они больше не противостоят собственной гравитации, они разрушаются (коллапсируют). Маломассивные звезды, включая наше Солнце, в конечном итоге становятся слабыми звездными призраками, известными как «белые карлики». Звезды, масса которых превышает массу Солнца примерно в 8 раз, становятся невероятно плотными и маленькими объектами, называемыми нейтронными звездами. И по-настоящему массивные звезды с массой более 20 солнечных масс при рождении становятся черными дырами, с конечными массами от нескольких до примерно 40 солнечных масс.

До недавнего времени у исследователей было не так много свидетельств существования черных дыр среднего и, скажем так, промежуточных размеров, чья масса превосходит солнечную в 100 и 100 000 раз. Черная дыра, созданная в результате слияния настолько массивных объектов, является первым убедительным примером существования этого «недостающего звена» астрономии.

На изображении рябь пространства-времени и короткий звуковой сигнал

Издание The New York Times приводит слова сразу нескольких ученых, которые не принимали участия в исследованиях. Так, астрофизик из Северо-Западного университета Вики Калорега, в электронном письме написала следующее: «Это первое и единственное надежное измерение массы черной дыры среднего размера на момент ее рождения. Теперь мы достоверно знаем, по крайней мере, один способ, которым эти объекты могут образовываться — путем слияния других черных дыр.»

Чтобы всегда быть в курсе последних новостей из мира популярной науки и высоких технологий, подписывайтесь на наш новостной канал в Telegram.

По мнению Сергея Клименко, физика из университета Флориды, открытие также является важной вехой в гравитационно-волновой астрономии. Эти объекты ученый искал на протяжении последних 15 лет. Исследователь отметил, что астрономы, возможно, получили представление о процессе, с помощью которого Вселенная «строит» черные дыры в темноте, превращая ничтожно малые объекты в грохочущих левиафанов.

Дэниел Хольц, физик-теоретик из Чикагского университета и член команды LIGO, назвал новые работы «первым по-настоящему удивительным открытием LIGO/Virgo.» Ранее обнаруженные другие бинарные системы, по мнению ученого, достаточно хорошо вписываются в ожидания. Но в этом случае настолько массивные черные дыры не должны существовать!

Международная группа исследователей, входящих в состав коллабораций LIGO и Virgo, сообщила о своих выводах в двух статьях, опубликованных в Physical Review Letters и Astrophysical Journal Letters. Согласно полученным результатам, события разворачивались на почти невообразимом расстоянии от Земли – 17 миллиардов световых лет. Одна черная дыра масса которой в 85 раз превосходит массу Солнца, и вторая, чья масса равна 66 массам нашей родной звезды, слились воедино в результате столкновения, породив черную дыру в 142 раза массивнее Солнца.

Как отмечают авторы исследования, этот процесс слияния может быть важным ключом к происхождению более массивной из двух черных дыр. Предположительно, черная дыра GW190521 имела массу в 85 Солнц, и, согласно стандартной астрофизической логике, не должна была существовать. Черные дыры с массой от 50 до 120 солнц не могут образоваться, по крайней мере, из умирающей звезды – именно об этом свидетельствуют история и расчеты.

Тайны массивных звезд

Исследователи уже довольно давно предполагают, что нечто странное происходит с очень, очень массивными звездами, возможно, с теми, чьи начальные массы находятся между 130 и 250 солнечными массами, чьи ядра становятся действительно горячими (около миллиарда градусов Кельвина) в конце звездной эволюции. Свет, отражающийся внутри этих звезд настолько энергичен, что может трансформироваться в пары электронов и позитронов (позитроны являются антиматериальными двойниками электрона — они почти идентичны, но имеют противоположный заряд).

Черные дыры «средних размеров» – это недостающее звено астрономии

Это, в свою очередь, делает звезду нестабильной: давление внезапно падает, центр звезды сжимается и нагревается и беглый ядерный синтез заставляет всю звезду взорваться в яркой сверхновой «парной нестабильности», не оставляя после себя никаких остатков.

Как отмечает доктор Хольц, большая черная дыра находится прямо посередине области, где черным дырам не место. Природа, похоже, проигнорировала все наши тщательные теоретические расчеты, утверждая, что черных дыр такой массы не существует. Он добавил: «подобные открытия одновременно обескураживают и пробуждают интерес. С одной стороны, одно из наших главных убеждений оказалось ошибочным. С другой стороны, в этом есть что-то новое и неожиданное, и теперь гонка продолжается, ведь нужно попытаться выяснить, что происходит.

По мнению д-ра Хольца и других ученых, наиболее интригующей является вероятность того, что слишком массивная черная дыра GW190521 была образована двумя меньшими черными дырами, которые столкнулись и слились. В этом случае слияние, наблюдаемое в июне 2020 года, было бы событием второго или даже третьего поколения, одним из иерархической серии слияний черных дыр, которые в конечном итоге приводят к сверхмассивным черным дырам. Некоторые астрофизики считают, что подобные слияния, скорее всего, происходят вблизи центров галактик, где сверхмассивные черные дыры создают закрученные спирали газа и других объектов, в которых могут собираться и размножаться тысячи более мелких черных дыр.

Источник

Adblock
detector