Физики считают, что именно это и произошло в первые три минуты существования Вселенной
Около 13,8 миллиарда лет назад произошло нечто загадочное, получившее название «Большой взрыв». Произошло массовое расширение, которое взорвало возможную сингулярность, как воздушный шар, в конечном итоге породив нашу Вселенную. Поскольку каждому семени нужно определенное время, чтобы превратиться в полноценное растение, на создание Вселенной в том виде, в каком мы ее знаем сегодня, потребовалось чуть больше семи дней. Но именно в первые 3 минуты происходило больше всего главных событий. Итак, вот что, по мнению физиков, произошло в первые 3 минуты после Большого взрыва!
Планковская эпоха
Вскоре после Большого взрыва первым возникшим периодом была эпоха Планка. В этот конкретный период времени температура Вселенной была 10 32 К, настолько высока, что все четыре фундаментальные силы (гравитационная сила, электромагнитная сила, слабая сила и сильная сила) природы существовали вместе как одна суперсила. Эта эпоха длилась 10 -43 секунды. Поскольку в масштабе Планка современные физические теории не могут быть применены для расчета того, что произошло, о физике эпохи Планка известно очень мало.
Эпоха Великого объединения
Эпоха ТВО или «Великой объединенной теории» началась, когда Вселенной было всего 10 -43 секунды, и продолжалась до 10 -36 секунд после Большого взрыва. После эпохи Планка фундаментальная сила гравитации отделилась от трех других фундаментальных сил стандартной модели. Итак, электрослабое взаимодействие, сильное взаимодействие и электромагнитное взаимодействие были единым целым в эпоху ТВО. Более того, к концу этой эпохи температура упала до 10 29 K с 10 32 K.
Инфляционная и электромагнитная эпоха
Электрослабая эпоха стала третьей по счету после Большого Взрыва. В эту эпоху сильная сила отделилась от двух других сил, таким образом оставив позади слабую и электромагнитную силу как единую силу. Более того, космическая инфляция началась, когда Вселенной было всего 10 -33 секунды. Во время инфляции Вселенная расширялась в геометрической прогрессии и выросла от размера протона до размера, эквивалентного кулаку. Во время инфляции вселенная расширялась со скоростью, превышающей скорость света, однако точная физика этого интенсивно ускорившегося расширения до сих пор не ясна.
Космическая инфляция закончилась очень скоро, и позже Вселенная начала нормально расширяться. Сейчас Вселенной 10 -32 секунды, температура упала до 100 триллионов триллионов кельвинов и, что самое важное, также сформировались W и Z бозоны.
Кварковая эпоха
Электрослабая эпоха закончилась через 10 -12 секунд после Большого взрыва, а затем началась эпоха кварков. К тому времени Вселенная достаточно остыла, чтобы поле Хиггса имело положительное значение. Это привело к тому, что электромагнитная сила и слабая сила отделились друг от друга. Итак, теперь все четыре фундаментальные силы обрели свою индивидуальную идентичность. Все доступные частицы могут взаимодействовать с полем Хиггса и могут набирать массу. Однако температура все еще очень высока для того, чтобы кварки слились и образовали адроны, такие как протоны и нейтроны. В стандартной модели физики кварки являются одним из самых крошечных объектов.
Адронная эра
Адроны — это класс частиц, состоящих из двух или более кварков. Вскоре после того, как эпоха кварков закончилась, эра адронов началась через 1 микросекунду после Большого взрыва. К этому времени температура упала до такой степени, что кварки предыдущей эры могли объединиться в адроны. Хотя небольшая асимметрия вещества и антивещества на более ранних этапах привела к устранению антиадронов, все же большинство пар адрон/антиадрон уничтожили друг друга.
Так что к концу этого периода в основном остались только легкие стабильные адроны: протоны и нейтроны. Эпоха адронов закончилась через 1 секунду после Большого взрыва.
Лептонная эпоха
Когда Вселенная постарела на одну секунду, ее температура стала достаточно благоприятной для образования другого класса элементарных частиц — лептонов. Лептоны — это своего рода элементарные частицы в природе, и поэтому они больше не состоят из каких-либо составляющих частиц, таких как адроны. Электрон — классический пример лептона. Таким образом, к этому времени начали формироваться лептоны и антилептоны, и это производство продолжалось 10 секунд. Лептоны и антилептоны оставались в тепловом равновесии, поскольку энергия фотонов все еще была достаточно высокой для образования электрон-позитронных пар. Однако Вселенная все еще оставалась непрозрачной, поскольку эти свободные электроны могли легко рассеивать фотоны.
Начало нуклеосинтеза
К настоящему времени Вселенная содержит протоны, нейтроны, электроны и фотоны. Фотоны превосходили массивные частицы в миллиарды раз. Все четыре основные силы приобрели свою современную форму. Теперь настало время для начала самого важного процесса нуклеосинтеза.
Проще говоря, нуклеосинтез — это процесс, в котором новые атомные ядра образуются из ранее существовавших нуклонов и меньших ядер. Это процесс, посредством которого образуется большинство более тяжелых элементов в нашей Вселенной.
Так что теперь, в возрасте 2 минут, температура Вселенной упала ниже 1,2 миллиарда градусов Кельвина. При этой температуре средняя энергия фотона составляла 1,8 х 10 -14 Дж, что было эквивалентно энергии связи ядер дейтерия. Ядро дейтерия состоит из протона и нейтрона, удерживаемых вместе сильным ядерным взаимодействием. Итак, через две минуты после Большого взрыва дейтерий образовался в результате слияния протонов и нейтронов. Это произошло впервые после Большого Взрыва, когда Вселенная содержала ядра более сложные, чем один протон.
Наконец, через 3 минуты после Большого взрыва температура Вселенной упала ниже 1 миллиарда градусов Кельвина. При этой температуре средняя энергия фотонов составляла 1,5 х 10 -14 джоулей, что эквивалентно энергии связи ядер гелия. Итак, в возрасте 3 минут дейтерий, протоны и нейтроны объединились с помощью различных возможных процессов, чтобы сформировать ядра гелия.
В двух словах, в первые три минуты после Большого Взрыва протоны и нейтроны начали сливаться вместе, образуя дейтерий, а атомы дейтерия затем соединились друг с другом, образуя гелий-4. За этими тремя минутами последовал ряд различных эпох и разносторонних процессов нуклеосинтеза, которые сформировали вселенную, в которой мы живем сегодня. Но первые три минуты сформировали период, который дал нам самые фундаментальные элементы нашего существования, т.е. водород и гелий, и подготовить почву для продвинутых процессов. Это, несомненно, делает первые три минуты после большого взрыва самыми важными минутами в истории эволюции нашей Вселенной.
Источник
История Вселенной за 2 минуты
Среди бульона огромнейшей плотности и жара, в супе под названием сингулярность столкнулась материя и антиматерия. С тех пор Вселенная надувается пространством словно шарик воздухом, только быстрее скорости света, ведь предел в 299 000 км/с накладывается лишь на физические тела.
Спустя одну триллионную секунды после этого события, именуемого Большим взрывом по молодой Вселенной во всю летали фотоны озаряя светом каждый её уголок, преобразовывая энергию в вещество и антивещество, элементарные частицы лептоны и кварки аннигилировали. Было по прежнему жарко и будет так ещё примерно 379 000 лет.
Через этот промежуток времени плотность материи значительно снизилась, то же самое произошло и с температурой. Как только Вселенная остыла до менее 3 000 градусов Цельсия частицы уже не мотались так быстро и электроны смогли легко присоединиться к ядрам, так получились атомы.
Они сложились в молекулы, а молекулы в галактики, звёзды, планеты и. нас с тобой, ведь все мы выходцы из сингулярности.
Вышеописанные события до 379 000 года после Большого взрыва оставили за собой след в виде теплового излучения, которое называют реликтовым.
Прошло около 10 миллиардов лет после Большого взрыва. В океане галактик Ланиакея, связуемых гравитацией тёмной материи плавает спиральный Млечный Путь. В его рукаве Ориона из останков протозвезды формируется молодая звезда Солнце. Из протопланетного диска, летающего на её орбите рождается множество планет. Миновав 4,51 миллиарда лет остаётся лишь восьмёрка. На одной из этих планет появляется жизнь.
Источник
О Теории Большого взрыва простыми словами
Теория Большого взрыва является на сегодняшний день основным объяснением того, как началась Вселенная.
Если свести теорию к одному предложению, то теория гласит, что Вселенная, какой мы ее знаем, начиналась с небольшой сингулярности (состояние нашей Вселенной, когда плотность материи и кривизна пространства-времени были очень велики), а затем расширялась в течение следующих 13,8 миллиардов лет в космос , который мы знаем сегодня.
А если сказать проще — почти 14 миллиардов лет назад вся Вселенная была внутри пузыря, который был в тысячи раз меньше булавочной головки. Но при этом горячее и плотнее, чем мы можем себе представить. Затем этот пузырь взорвался. Вселенная, которую мы знаем, родилась. Время, пространство и материя начались с Большого взрыва. За доли секунды Вселенная выросла от меньшего, чем один атом, до большего, чем галактика. И она продолжала расти с фантастической скоростью. И все еще расширяется сегодня.
Большинство астрономического сообщества принимает теорию, но есть некоторые теоретики, имеющие альтернативные объяснения, такие как вечная инфляция или колеблющаяся вселенная.
Интересно, что фраза «теория большого взрыва» была популярна среди астрофизиков десятилетиями, но получила широкое распространение в 2007 году, когда на CBS состоялось премьера одноименного комедийного сериала.
Первые секунды
В первую секунду после начала существования Вселенной температура окружающей среды составляла около 5,5 миллиарда градусов Цельсия.
По мере расширения и охлаждения Вселенной энергия превращалась в частицы вещества и антивещества. Эти два противоположных типа частиц в значительной степени уничтожили друг друга. Но какая-то материя выжила. Более стабильные частицы, называемые протонами и нейтронами, начали формироваться, когда Вселенной исполнилась одна секунда.
В течение следующих трех минут температура опустилась ниже 1 миллиарда градусов по Цельсию. Теперь стало достаточно прохладно, чтобы протоны и нейтроны собрались вместе, образуя ядра водорода и гелия.
Через 300 000 лет Вселенная остыла примерно до 3000 градусов. Атомные ядра могли наконец захватить электроны, чтобы сформировать атомы. Вселенная наполнена облаками водорода и гелия.
Появление галактик
Мы не можем видеть ничего, что произошло за первые 300 000 лет существования Вселенной. Ученые пытаются выяснить это на основе своих знаний об атомных частицах и при помощи компьютерных моделей.
Единственное прямое свидетельство самого Большого взрыва — слабое свечение в космосе . Космические корабли и телескопы на воздушных шарах видят это как картину с пятнами более теплого и более холодного газа. Эти волны также показывают, где водородные облака были немного плотнее.
По прошествии миллионов лет плотные участки затянулись материалом, потому что они обладали большей гравитацией. Наконец, примерно через 100 миллионов лет после Большого взрыва газ стал достаточно горячим и плотным для образования первых звезд.
Новые звезды рождались со скоростью в 10 раз выше, чем в современной Вселенной. Большие скопления звезд вскоре стали первыми галактиками.
Космический телескоп Хаббл и мощные наземные телескопы находят галактики, которые были созданы примерно через миллиард лет после Большого взрыва. Эти маленькие галактики были намного ближе друг к другу, чем галактики сегодня. Столкновения были обычным явлением. Наша галактика Млечный Путь также образовалась в результате столкновения галактик.
Источник
Адронный коллайдер может уничтожить всю Вселенную за миллионную долю секунды
Всемирно известный физик Стивен Хокинг предупредил ученых, что попытки построить еще больший адронный коллайдер, для достижения большей энергии столкновения, могут привести к катастрофе. По его мнению, эксперименты с бозоном Хиггса могут плохо закончиться, и мы даже не заметим, когда наша Вселенная перестанет существовать.
Предупреждение Хокинга появилось в предисловии к новой книге «Starmus», в которой собраны лекции известных ученых и астронавтов.
«У потенциала Хиггса есть тревожное свойство, заключающееся в том, что эта молекула может становиться метастабильной при энергиях выше 100 миллиардов гигаэлектронвольт, — пишет Хокинг».
Бозон Хиггса — это длинная постулируемая элементарная частица, которую некоторые журналисты пафосно называют «божественной частицей». Она отвечает за придание массы объектам, поэтому это фундаментальная сила природы, которая сводится к существованию скалярного безмассового поля, в котором, как в голограмме, бозоны, характеризующие материю, придают известную нам форму.
Эксперименты ученых с использованием высоких энергий столкновения может вызвать коллапс в пространстве-времени, который уничтожит всю Вселенную за миллионную долю секунды.
«Больно не будет, потому что мы не успеем это почувствовать и тут ничего не поделаешь», — предупреждает Хокинг.
Уже при создании БАК (Большой адронный коллайдер) раздались голоса критиков, указывающих на то, что эксперименты с высокими энергиями могут приводить к непредсказуемым явлениям на квантовом уровне, включая образование квантовых сингулярностей, таких как микрочерные дыры и другие.
Теперь, когда Китай и Европа говорят о строительстве еще большего коллайдера, риск получить достаточно энергии, чтобы что то пошло не так, определенно возрастает. Не исключено, что энергия столкновений, используемая учеными, со временем достигнет уровня, опасного для существования всей Вселенной.
Как сказал Стивен Хокинг, научное сообщество не в восторге от этого. Однако не потому, что это неправда, а потому, что чрезмерное воздействие таких угроз, по их мнению, может значительно затруднить сбор средств для расширения БАК и строительства будущих больших высокоэнергетических адронных коллайдеров.
Если вам понравилась статья, то вы можете поставить лайк, написать комментарий и подписаться на мой канал. Спасибо!
Источник
Спросите Итана: насколько велика вся ненаблюдаемая Вселенная целиком?
Изображение, полученное с телескопа Хаббл, демонстрирует массивное скопление галактик PLCK_G308.3-20.2, ярко светящихся в темноте. Именно так выглядят огромные участки удалённой Вселенной. Но как далеко простирается известная нам Вселенная, включая и ту часть, что мы не можем наблюдать?
13,8 млрд лет назад произошёл Большой взрыв. Вселенная заполнилась материей, антиматерией, излучением, и существовала в сверхгорячем и сверхплотном, но расширяющемся и охлаждающемся состоянии. К сегодняшнему дню её объём, включающий наблюдаемую нами Вселенную, расширился до того, что его радиус составляет 46 млрд световых лет, и свет, сегодня впервые приходящий в наши глаза, соответствует пределам того, что мы способны измерить. А что же находится дальше? Что насчёт ненаблюдаемой части Вселенной? Именно это хочет знать наш читатель:
Мы знаем размер наблюдаемой Вселенной, поскольку нам известен её возраст (по меньшей мере, с момента фазового перехода) и мы знаем, как распространяется свет. Мой вопрос в том, почему математика, описывающая реликтовое излучение и другие предсказания, не может сообщить нам размер Вселенной? Мы знаем, насколько горячей она была, и насколько холодная она сейчас. Разве масштаб не влияет на эти расчёты?
Ох, если бы всё было так просто.
История Вселенной, определена настолько хорошо, насколько далеко в прошлое мы способны заглянуть при помощи различных инструментов и телескопов. Но можно сказать, прибегая к тавтологии, что наши наблюдения могут дать нам информацию только о наблюдаемых её частях. Обо всём остальном приходится догадываться, и эти догадки хороши лишь настолько, насколько хороши лежащие в их основе предположения.
Сегодня Вселенная холодная и комковатая, а ещё она расширяется и оказывает гравитационное воздействие. Заглядывая далеко в космос, мы не только смотрим на далёкие расстояния, но и видим далёкое прошлое, из-за конечной скорости света. Удалённые части Вселенной менее комковатые и более однородные, у них было меньше времени на формирование более крупных и сложных структур под воздействием гравитации.
Ранняя, удалённая от нас Вселенная, также была и горячее. Расширяющаяся Вселенная приводит к увеличению длины волны распространяющегося по ней света. С её растяжением свет теряет энергию, охлаждается. Это означает, что в далёком прошлом Вселенная была горячее – и этот факт мы подтвердили, наблюдая за свойствами удалённых частей Вселенной.
Исследование от 2011 года (красные точки) даёт наилучшие из имеющихся на сегодня свидетельств того, что температура реликтового излучения в прошлом была выше. Спектральные и температурные свойства пришедшего издалека света подтверждают тот факт, что мы живём в расширяющемся пространстве.
Мы можем измерить температуру сегодняшней Вселенной, спустя 13,8 млрд лет после Большого взрыва, изучая излучение, оставшееся от того горячего, плотного раннего состояния. Сегодня оно проявляет себя в микроволновой части спектра и известно, как реликтовое излучение. Оно укладывается в спектр излучения абсолютно чёрного тела и имеет температуру 2,725 К, и довольно легко показать, что эти наблюдения с удивительной точностью совпадают с предсказаниями модели Большого взрыва для нашей Вселенной.
Реальный свет Солнца (слева, жёлтая кривая) и абсолютно чёрного тела (серая). Благодаря толщине фотосферы Солнца оно больше относится к чёрным телам. Справа – реальное реликтовое излучение, совпадающее с излучением чёрного тела, по измерениям спутника COBE. Заметьте, что разброс ошибок на графике справа удивительно мал (в районе 400 сигм). Совпадение теории с практикой историческое.
Более того, нам известно, как меняется энергия этого излучения с расширением Вселенной. Энергия фотона обратно пропорциональна длине волны. Когда Вселенная была в два раза меньше, у фотонов, оставшихся от Большого взрыва, энергия была в два раза больше; когда размер Вселенной составлял 10% от её текущего, энергия этих фотонов была в 10 раз большей. Если мы захотим вернуться назад, к моменту, когда размер Вселенной составлял 0,092% от её текущего, мы обнаружим, что Вселенная была в 10 89 раз горячее, чем сегодня: порядка 3000 К. При таких температурах Вселенная способна ионизировать все содержащиеся в ней атомы. Вместо твёрдых, жидких или газообразных веществ, вся материя во всей Вселенной пребывала в виде ионизированной плазмы.
Вселенная, в которой свободные электроны и протоны сталкиваются с фотонами, превращается в нейтральную, прозрачную для фотонов, по мере остывания и расширения. Слева – ионизированная плазма до испускания реликтового излучения, справа – нейтральная Вселенная, прозрачная для фотонов.
К размеру сегодняшней Вселенной мы подходим, разбираясь в трёх связанных между собой вопросах:
- Как быстро Вселенная расширяется сегодня – это мы можем измерить несколькими способами.
- Насколько горячая Вселенная сегодня – это мы можем узнать, изучая реликтовое излучение.
- Из чего состоит Вселенная – включая материю, излучение, нейтрино, антиматерию, тёмную материю, тёмную энергию, и т.д.
Используя сегодняшнее состояние Вселенной, мы можем провести экстраполяцию назад, к ранним этапам горячего Большого взрыва, и прийти к значениям для возраста и размера Вселенной.
Логарифмический график зависимости размера наблюдаемой Вселенной, в световых годах, от количества времени, прошедшего с момента Большого взрыва. Всё это применимо лишь к наблюдаемой Вселенной.
Из всего набора доступных наблюдений, включающих реликтовое излучение, данные по сверхновым, наблюдения крупномасштабных структур и акустических барионных осцилляций, мы получаем картину, описывающую нашу Вселенную. Спустя 13,8 млрд лет после Большого взрыва её радиус составляет 46,1 млрд световых лет. Это граница наблюдаемого. Всему, что находится дальше, даже движущемуся со скоростью света с момента горячего Большого взрыва, не хватит времени на то, чтобы добраться до нас. С течением времени увеличиваются возраст и размер Вселенной, и всегда будет существовать граница того, что мы можем увидеть.
Художественное представление наблюдаемой Вселенной на логарифмической шкале. Отметьте, что мы ограничены в том, как далеко можем заглянуть в прошлое, количеством времени, прошедшим с горячего Большого взрыва. Это 13,8 млрд лет, или (учитывая расширение Вселенной) 46 млрд световых лет. Все, живущие в нашей Вселенной, в любой её точке, увидят почти такую же картину.
Что мы можем сказать по поводу той части Вселенной, что находится за пределами наших наблюдений? Мы можем лишь предполагать на основании законов физики и того, что мы можем измерить в нашей, наблюдаемой части. К примеру, мы видим, что Вселенная на крупных масштабах пространственно плоская: она не искривлена ни положительно, ни отрицательно, с точностью в 0,25%. Если мы предположим, что наши законы физики сформулированы верно, мы можем оценить, насколько большой может быть Вселенная до тех пор, пока она не замкнётся на себя.
Величины горячих и холодных участков и их масштабы говорят о кривизне Вселенной. Насколько точно мы способны измерить, она выглядит идеально плоской. Акустические барионные осцилляции дают ещё один метод наложения ограничений на кривизну, и приводят к сходным результатам.
Слоановский цифровой небесный обзор и спутник Планк дают нам наилучшие данные на сегодня. Они говорят о том, что если Вселенная и искривляется, замыкаясь на себя, то та её часть, что мы можем видеть, настолько неотличима от плоской, что её радиус должен не менее чем в 250 раз превышать радиус наблюдаемой части.
Это значит, что ненаблюдаемая Вселенная, если в ней нет никаких топологических странностей, должна иметь диаметр не менее 23 триллионов световых лет, а её объём должен быть, по крайней мере, в 15 млн раз больше, чем наблюдаемый нами. Но если позволить себе рассуждать теоретически, мы можем вполне убедительно доказать, что размеры ненаблюдаемой Вселенной должны значительно превышать даже эти оценки.
Наблюдаемая Вселенная может иметь размер в 46 млрд световых лет во всех направлениях от нашего местоположения, но за этими пределами определённо существует и большая её часть, ненаблюдаемая, возможно, даже бесконечная, похожая на ту, что видим мы. Со временем мы сможем увидеть немного больше, но не всю её.
Горячий Большой взрыв может отмечать появление известной нам наблюдаемой Вселенной, но он не отмечает зарождение самого пространства и времени. До Большого взрыва Вселенная проходила период космической инфляции. Она была заполнена не материей и излучением, и не была горячей, а:
- была заполнена энергией, присущей самому пространству,
- расширялась с постоянной, экспоненциальной скоростью,
- и создавала новое пространство так быстро, что самая малая из возможных длин, планковская длина [1,6 × 10 -35 м], растягивалась до размеров наблюдаемой сегодня Вселенной каждые 10 -32 секунды.
Инфляция заставляет пространство расширяться экспоненциально, что может очень быстро привести к тому, что искривлённое или не гладкое пространство станет выглядеть плоским. Если Вселенная искривлена, радиус её кривизны, по меньшей мере, в сотни раз больше того, что мы можем наблюдать.
В нашей части Вселенной инфляция действительно подошла к концу. Но три вопроса, на которые мы не знаем ответов, чрезвычайно сильно влияют на реальный размер Вселенной, и то, является ли она бесконечной:
- Насколько велик участок Вселенной после инфляции, породивший наш Большой взрыв?
- Верна ли идея вечной инфляции, по которой Вселенная бесконечно расширяется, по крайней мере, в некоторых регионах?
- Как долго длилась инфляция, пока не остановилась и не породила горячий Большой взрыв?
Возможно, что та часть Вселенной, где шла инфляция, смогла вырасти до размера, не сильно превышающего то, что мы можем наблюдать. Возможно, что в любой момент появится свидетельство наличия «края», на котором закончилась инфляция. Но также возможно, что Вселенная в гуголы раз больше наблюдаемого. Не ответив на эти вопросы, мы не получим ответа на главный.
Огромное количество отдельных регионов, в которых произошёл Большой взрыв, разделяется пространством, постоянно растущим в результате вечной инфляции. Но мы не имеем понятия, как проверить, измерить или получить доступ к тому, что лежит за пределами нашей наблюдаемой Вселенной.
За пределами того, что мы можем видеть, скорее всего, находится ещё больше Вселенной, такой же, как и наша, с теми же законами физики, с теми же космическими структурами и такими же шансами на сложную жизнь. Также у «пузыря», в котором закончилась инфляция, должен быть конечный размер, при том, что экспоненциально большое число таких пузырей содержится в более крупном, расширяющемся пространстве-времени. Но даже если вся эта Вселенная, или Мультивселенная, может быть невероятно большой, она может и не быть бесконечной. На самом деле, если только инфляция не продолжалась бесконечно долго, или Вселенная не родилась бесконечно большой, она должна быть конечной.
Как ни велика наблюдаемая нами часть Вселенной, как ни далеко мы можем заглянуть, всё это составляет лишь малую долю того, что должно существовать там, за пределами.
Самая большая проблема состоит в том, что у нас не хватает информации для определённого ответа на вопрос. Мы знаем только, как получить доступ к информации, доступной внутри нашей наблюдаемой Вселенной: эти 46 млрд световых лет во всех направлениях. Ответ на самый большой вопрос, о конечности или бесконечности Вселенной, может быть спрятан в самой Вселенной, но мы не можем познать достаточно большую её часть, чтобы знать наверняка. И пока мы не разберёмся с этим, или не придумаем хитроумную схему расширения границ возможностей физики, у нас будут оставаться одни только вероятности.
Источник