Теория взаимодействия частиц во Вселенной
В июле 2012 г. участники семинара ЦЕРН (Европейского центра ядерных исследований) рассказали о том, что им наконец удалось обнаружить частицу, похожую на элементарный бозон Хиггса, предсказанный в конце ХХ в. американским ученым Стивеном Вайнбергом. Это событие стало новой вехой в развитии физики, ведь найденный бозон уже давно получил титул Частицы Бога и чуть ли не главного элемента всех процессов и явлений во Вселенной.
Еще Альберт Эйнштейн делал попытки разработать «единую теорию всего», объединив четыре взаимодействия, на которых зиждутся все физические процессы: гравитационное (сила тяжести), электромагнитное, сильное (ответственное за реакции в ядрах атомов) и слабое (влияющее на реакции между элементарными частицами, в том числе нейтрино). Увы, несмотря на все старания, ученый так ни к чему и не пришел.
Но зачем вообще нужно было объединять все эти взаимодействия? Дело в том, что с ростом энергии, выделяющейся при столкновениях и рассеяниях частиц, способы их контактирования постепенно становятся все более схожими. Очевидно, в первые моменты после Большого взрыва, который дал начало нашей Вселенной, существовало лишь одно взаимодействие, но материя охлаждалась, энергия частиц таяла, и взаимодействовать они хотели уже по-разному. Так со временем некогда целостное взаимодействие раскололось на четыре отдельные силы. Ученые долго бились над тем, чтобы представить этот процесс в виде физической и математической моделей, однако им не хватало знаний.
Решение нашел Стивен Вайнберг (р. 1933), написавший знаменитую книгу «Первые три минуты», где понятным языком было изложено то, что происходило в первые 3 мин после Большого взрыва. С 1960-х Вайнберг разрабатывал математическую систему, основанную на симметрии — идее зеркального отражения частиц и их взаимодействий. Если принять эту идею, становится понятным, почему при рассеянии одной частицы на другой наблюдаются те или иные формы взаимодействия между ними.
Само понятие симметрии появилось еще в 1930-х, но ученые никак не могли догадаться, как оно может связать слабые и электромагнитные силы. Знать бы, что общего может быть у этих сил, и можно аналитическим путем прийти к единой теории, поясняющей причины и процесс базовых взаимодействий во Вселенной. А общей у них могла быть лишь некая частица, которая исполняла бы функции переносчика, — подобно тому, как световой квант, фотон, переносит электромагнитные взаимодействия между электронами и позитронами, а глюон переносит заряд между кварками. Сложность состояла в том, что такая частица по идее должна была иметь огромную массу, и технические возможности тогдашних ускорителей не позволяли ее обнаружить.
Только в 1967 г. Вайнберга осенило, что искать загадочную частицу нужно в другом направлении. В попытках соединить тяжелый W-бозон — переносчик слабых взаимодействий — с невесомым фотоном, переносящим электромагнитное взаимодействие, ученый пришел к мысли, что упускает какой-то механизм, неведомый ранее. Проведя еще ряд теоретических исследований, Вайнберг нашел этот механизм и назвал его «бозон Хиггса».
В том же 1967 г. ученый издал статью «Модель лептонов», где четко выстроил в единую теорию принципы взаимодействия частиц и квантовую механику, а главное — связал электромагнетизм со «слабой силой», вызывающей определенные ядерные распады. Подчеркнув, что все это — проявления одной и той же силы, Вайнберг ввел механизм Хиггса, который сообщает частицам массу. За это открытие в 1979 г. ему вручили Нобелевскую премию.
С момента выхода статьи Вайнберга ЦЕРН задался целью доказать его умозаключения, для чего принялся конструировать все более мощные ускорители. В 1973 г. установка Gargamelle представила первое подтверждение существования электрослабого тока. В 1982 г. суперпротонный синхротрон впервые позволил обнаружить W-бозон. Наконец, в декабре 2011 г., проводя эксперименты в ЦЕРН на Большом адронном коллайдере (LHC — Large Hadron Collider), ученые смогли четко рассмотреть искомую частицу H.
Дальнейшие наблюдения показали, что бозон Хиггса не заряжен и нестабилен, при этом в зависимости от ситуации распадается по-разному. Благодаря LHC ученые увидели, что час-тица может распадаться на два фотона, а также на пары электрон/позитрон, мюон/антимюон. Как для микромира, бозон Хиггса живет относительно долго, а рождается либо сам от взаимодействия двух глюонов, либо вместе с парой легких высокоэнергетичных кварков, с одним W- или Z-бозоном или с парой t-кварка и антикварка. Изучая разные механизмы рождения этих частиц на LHC, можно многое узнать о взаимодействии бозона Хиггса с W-, Z-бозонами и t-кварком.
Еще одна важная характеристика Н-бозона — способность взаимодействовать с самим собой. То есть виртуальная частица Н (временный, маложивущий бозон, у которого нарушена связь между импульсом и энергией) может распасться на два обычных бозона. Впрочем, свойства этого процесса ученым еще предстоит исследовать.
По словам сотрудников ЦЕРН, «прошло полвека после публикации статьи Стивена Вайнберга, но до сих пор не была сформулирована теория, которая так же ясно объясняла бы фундаментальную физику. Именно Вайнберг собрал все части головоломки и соединил их в одну, очень простую идею».
Источник
Виды взаимодействий
Взаимодействие является универсальной характеристикой различных систем, структур и наук. Многие природные объекты, материальные и нематериальные явления невозможно объяснить без взаимодействия, иначе взаимного действия, воздействия, влияния, которое оказывают объекты друг на друга. Основной причиной движения материи также является взаимодействие. Как и движение, категория взаимодействия универсальна.
В науке принято выделять четыре не сводящихся друг к другу вида взаимодействий. Это гравитационное, электромагнитное, сильное и слабое. В физике причиной изменения движения тел является сила. Исследуя окружающий нас мир, мы можем заметить множество разнообразных сил: сила тяжести, сила сжатия пружины, сила, возникающая при столкновении тел, сила трения и другие. Однако, когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку атомы взаимодействуют через электростатическое поле электронных оболочек, то, как оказалось, все эти силы — лишь различные проявления электромагнитного взаимодействия. Действительно, представим себе два сталкивающихся бильярдных шара. Всегда слышится звук удара, но что при этом происходит. Всего навсего взаимодействовали электронные оболочки атомов.
Единственное исключение из этого многообразия сил — сила тяжести, причиной которой является гравитационное взаимодействие между двумя массивными телами. Чтобы понять, что представляют собой два оставшихся взаимодействия, нужно чуть лучше познакомиться с миром элементарных частиц.
Заглянем внутрь атомного ядра. Ядро состоит из двух видом элементарных частиц – протонов и нейтронов. Протоны – положительно заряженные элементарные частицы, довольно тяжелые (почти в 2000 раз тяжелее электрона). Нейтроны не имеют электрического заряда, еще чуть более тяжелые, чем протоны. Знание точных показателей массы и зарядов протонов и нейтронов дает возможность понять, что ядра атомов не смогли бы существовать только при наличии гравитационного и электрического взаимодействия. Сто лет назад именно такое положение вещей навело ученых на мысль о существовании еще одного типа взаимодействия – сильного.
Как оказалось позднее, и сильного взаимодействия недостаточно для описания всех процессов, происходящих в микромире. Необходимо было существование еще одного слабого взаимодействия. Для того чтобы понять, что представляют собой все эти виды взаимодействий проведем их сравнительную характеристику.
Гравитационное взаимодействие
В гравитационном взаимодействии участвуют все тела, обладающие массой, вне зависимости от их природы. Гравитационные силы являются лишь силами притяжения, так как все тела обладают положительной массой (за исключением темной энергии). Это взаимодействие определяется фундаментальным законом всемирного тяготения. Гравитационные силы убывают пропорционально квадрату расстояния между взаимодействующими телами. Закон всемирного тяготения Ньютона описывается формулой:
, где G — гравитационная постоянная.
Гравитационное взаимодействие определяет падание тел под действием силы тяготения Земли, а также движение планет в Солнечной системе, движение галактик во Вселенной и т.д.
То есть гравитация играет решающую роль лишь в Мегамире, в космических пространствах. На Земле же гравитационное взаимодействие самое слабое, поэтому в теории элементарных частиц оно вовсе не учитывается (10 -13 см).
Электромагнитное взаимодействие
Электромагнитное взаимодействие очень похоже на гравитационное. Отличие лишь в том, что у нас есть как положительные, так и отрицательные заряды, отсюда и возникновение как электрических, так и магнитных полей. Электромагнитное взаимодействие более сильное, чем гравитационное из-за большей константы связи (заряды в один кулон притягиваются сильнее, чем массы в один килограмм).
Данное взаимодействие позволяет электронам и атомным ядрам объединяться в атомы, атомам – в молекулы, а значит такое взаимодействие является основным в химических и биологических процессах. Без электромагнитного взаимодействия не было бы ни молекул, ни тепла, ни света, ни других макрообъектов. Законы Кулона, Ампера и электромагнитная теория Максвелла объясняет и описывает электромагнитное взаимодействие. Оно является основой создания самых разных радиоприемников, компьютеров, телевизоров и других электроприборов.
Электромагнитное взаимодействие в тысячу раз слабее сильно, но зато более дальнодействующее.
Сильное взаимодействие
Иначе этот вид взаимодействия называют ядерным, судя по названию оно самое сильное из всех представленных. Такое взаимодействия происходит на уровне атомных ядер. Ядерные силы – это один из видов проявления сильного взаимодействия. Это взаимодействие было открыто в 1911 году Э. Резерфордом практически одновременно с открытием ядра атома. Сильное взаимодействие передается с помощью глюонов, а протон и нейтрон теряют свои заряды и рассматриваются в сильном взаимодействии как нуклоны.
Ядра атомов являются очень устойчивыми системами, которые тяжело разрушить именно благодаря сильному взаимодействию частиц внутри атома. Без такого взаимодействия не смогли бы существовать атомные ядра, Солнце не смогло бы генерировать теплоту и свет без ядерных реакций, которые тоже возможно только благодаря сильному взаимодействию.
Слабое взаимодействие
Такой вид взаимодействия является короткодействующим, проявляется на очень малых расстояниях (10 -15 – 10 -22 см.). При слабом взаимодействии процессы между частицами протекают медленнее, благодаря нему большинство известных нам частиц нестабильно. Слабое взаимодействие связано с распадом частиц, в частности, с превращениями протона в нейтрон, позитрон и нейтрино, которые происходит в ядре. Переносчиками слабого взаимодействия являются вионы. Слабое взаимодействие – особый вид не контактного взаимодействия, связь осуществляется с помощью обмена промежуточными тяжелыми частицами — бозонами.
Из-за наличия данного вида взаимодействия возможно совершение ядерных реакций внутри Солнца, а значит, Солнце светит и дарит нам тепло именно благодаря слабому взаимодействию. Возникновение новых звезд также возможно из-за слабого взаимодействия.
Сила слабого и сильного взаимодействия очень быстро убывает с расстоянием. Так, например, в достаточно большом атомном ядре (например, уран) сила притяжения нуклонов находящихся на диаметрально противоположных концах ядра очень мала. Именно поэтому ядро урана нестабильно и подвержено самопроизвольному распаду. На достаточно малых расстояниях сила сильного взаимодействия превосходит силу электромагнитного. Это делает стабильными такие атомные ядра как литий натрий и т.п.
Аналогично электромагнитному заряду существует слабый заряд и сильный заряд. Поскольку на макроскопических расстояниях (сравнимых с размерами самих атомов и больше) это силы не действуют, то такие заряды приписываются только элементарным частицам. Элементарные частицы, обладающие сильным зарядом, называются барионами, к ним относятся, например, нуклоны — протон и нейтрон. Соответственно все они участвуют в сильном взаимодействии. Электрон и ряд других частиц не обладают таким зарядом и не участвуют в сильном взаимодействии. В слабом взаимодействии участвуют все частицы.
Существуют такие частицы, которые участвуют только в слабом и гравитационном взаимодействии – это нейтрино. Из-за такой особенности их очень тяжело обнаружить в эксперименте.
Таким образом, описанными выше четырьмя видами взаимодействиями определяется то, как взаимодействуют все известные объекты: от элементарных частиц до звезд и галактик. Например, сильное и слабое взаимодействия полностью определяют время жизни всех элементарных частиц, а гравитация – движение звезд и планет. Однако, пока еще не все процессы во Вселенной удается объяснить, и потому продолжаются поиски новых типов взаимодействий.
Автор статьи: Михаил Карневский
Обновлено Татьяна Сидорова 29.03.2018
Перепечатка без активной ссылки запрещена!
Элементарные частицы | Теория относительности |