Ученые зафиксировали самый мощный за всю историю наблюдений взрыв сверхновой
На просторах бесконечной Вселенной чего только нет. Галактики, звездные скопления, туманности, звездные системы, планеты — миллиарды самых разных небесных тел проживают в космосе свою жизнь. Одних только видов звезд в наблюдаемой Вселенной насчитывается больше 10. Среди них есть красные и белые карлики, пульсары, коричневые карлики, нейтронные звезды и другие. При этом, в процессе эволюции некоторых звезд происходит явление, известное под названием вспышка сверхновой или просто сверхновая звезда. Именно благодаря взрывам сверхновых существует жизнь на нашей планете. И даже мы с вами. Недавно ученые обнаружили взрыв самой большой сверхновой за всю историю наблюдений. Более того, сверхновая SN2016iet полностью противоречит пониманию учеными того, как сверхновые должны себя вести.
Астрономы зафиксировали самый мощный взрыв сверхновой звезды в ранее неизвестной галактике
Что такое сверхновая звезда?
Сверхновые — это невероятно массивные звезды, а их яркость иногда превышает яркость целых галактик. Как известно, каждая звезда имеет свой жизненный цикл. Когда жизненный цикл звезды подходит к концу, выделяется огромное количество энергии и происходит взрыв. При этом вспышка от взрыва сверхновой может быть настолько яркой и сильной, что превышает по своей мощи взрывы других звезд. Ученые объясняют это процессами, которые происходят в сверхновых на последней стадии их эволюции.
После взрыва сверхновой звезды в космос попадает огромное количество энергии и химических элементов, необходимых для нашей с вами жизни. К тому же, взрывы звезд являются одними из самых потрясающих и мощных явлений, наблюдаемых во Вселенной.
Так выглядит взрыв обычной сверхновой звезды
В ноябре 2016 года спутник Gaia Европейского космического агентства обнаружил нечто интригующее. Астрономы использовали данные наблюдений за последние три года в попытке понять, что же они видели. Сверхновая Sn2016 бросила вызов их ожиданиям. Свое исследование астрономы опубликовали в журнале The Astrophysical Journal.
Необычная сверхновая звезда
По мнению ученых они наблюдали за остатками самой массивной звезды, уничтоженной взрывом. Сверхновая SN2016iet необычная. Эта сверхновая обладает большим количеством энергии, продолжительностью, неожиданными химическими сигнатурами и находится в не богатой металлами окружающей среде. Это не похоже ни на что из того, что астрономы наблюдали раньше.
Изначально исследователи решили, что в данных допущены ошибки. Однако по словам специалистов, через некоторое время они определили, что загадочная сверхновая расположена в ранее не зарегистрированной галактике в миллиарде световых лет от Земли.
Еще больше новостей об удивительных открытиях астрономии вы найдете на нашем канале в Яндекс.Дзен.
По мнению астрономо, в этой сверхновой все выглядит по-другому — то, как она со временем меняет яркость, ее спектр, галактика, в которой она находится, и даже само расположение сверхновой в галактике тоже необычное. Эдо Бергер, профессор астрономии Гарвардского университета и соавтор исследования говорит, что иногда астрономы наблюдают за сверхновыми, которые необычны в каком-то одном аспекте. Однако SN2016iet уникальна во всех отношениях.
На фото E-ELT Экстремально Большой Телескоп диаметром 40 метров
До взрыва масса SN2016iet была в 200 раз больше массы нашего Солнца. Астрономы считают, что она образовалась в 54 тысячах световых лет от центра галактики, что само себе странно и необычно. С точки зрения продолжительности жизни звезды, эта была короткой — она просуществовала всего несколько миллионов лет. При этом за свою жизнь звезда потеряла порядка 85% своей массы. После взрыва ее обломки столкнулись с ранее выброшенным материалом. В результате образовалась странная сверхновая, за которой сегодня наблюдают астрономы.
Что такое парные сверхновые звезды?
Ученые считают, что получили первое доказательство существования парной-нестабильной сверхновой звезды. На протяжении десятилетий ученые предполагали существование таких звезд, однако до сегодняшнего дня доказательств не было обнаружено. Парные-нестабильные сверхновые звезды — это редкий тип невероятно ярких звезд. После взрыва таких звезд в окружающее пространство попадает огромное количество железа — до 10 солнечных масс. Кроме того, ученые считают, что взрыв SN2016iet представляет собой смерть самых массивных звезд во Вселенной.
Как думаете, какие еще сюрпризы скрывает эта необычная звезда? Делитесь своими мыслями в комментариях и нашем Telegram-чате.
Сегодня астрономы продолжают наблюдения за этой необычной звездой, чтобы узнать больше о том, как она сформировалась и как она может измениться в будущем. Большинство сверхновых исчезают и становятся невидимыми на фоне сияния галактик-хозяев в течение нескольких месяцев. Но поскольку SN2016iet очень яркая и изолирована, ученые могут изучать ее долгие годы.
Источник
Сверхновая звезда
Сверхновая звезда, или взрыв сверхновой — процесс колоссального взрыва звезды в конце ее жизни. При этом освобождается огромная энергия, а светимость возрастает в миллиарды раз. Оболочка звезды выбрасывается в космос, образуя туманность. А ядро сжимается настолько, что становится либо нейтронной звездой, либо чёрной дырой.
Химическая эволюция вселенной протекает именно благодаря сверхновым. Во время взрыва в пространство выбрасываются тяжелые элементы, образующиеся во время термоядерной реакции при жизни звезды. Далее из этих остатков формируются протозвёзды с планетарными туманностями, из которых в свою очередь образуются звёзды с планетами.
Так же возникла и Земля, все вещество которое нас окружает и из которого мы состоим, зародилось в недрах звёзд, еще до образования Солнца.
Как происходит взрыв
Как известно, звезда выделяет огромную энергию благодаря термоядерной реакции, происходящей в ядре. Термоядерная реакция — это процесс превращения водорода в гелий и более тяжелые элементы с выделением энергии. Но вот когда водород в недрах заканчивается, верхние слои звезды начинают обрушиваться к центру. После достижения критической отметки вещество буквально взрывается, всё сильнее сжимая ядро и унося верхние слои звезды ударной волной.
В довольно малом объеме пространства образуется при этом столько энергии, что часть ее вынуждено уносить нейтрино, у которой практически нет массы.
Сверхновая типа Ia
Этот вид сверхновых рождается не из звезд, а из белых карликов. Интересная особенность — светимость всех этих объектов одинакова. А зная светимость и тип объекта, можно вычислить его скорость по красному смещению. Поиск сверхновых типа Ia очень важен, ведь именно с их помощью обнаружили и доказали ускоряющееся расширение вселенной.
Возможно, завтра они вспыхнут
Существует целый список, в который включены кандидаты в сверхновые звёзды. Конечно, достаточно сложно определить, когда именно произойдет взрыв. Вот ближайшие из известных:
- IKПегаса. Двойная звезда расположена в созвездии Пегас на удалении от нас до 150 световых лет. Её спутник – массивный белый карлик, который уже перестал производить энергию посредством термоядерного синтеза. Когда главная звезда превратится в красный гигант и увеличит свой радиус, карлик начнёт увеличивать массу за счёт неё. Когда его масса достигнет 1,44 солнечной, может произойти взрыв сверхновой.
- Антарес. Красный сверхгигант в созвездие Скорпиона, от нас до него 600 световых лет. Компанию Антаресу составляет горячая голубая звезда.
- Бетельгейзе. Подобный Антаресу объект, находится в созвездии Орион. Расстояние до Солнца от 495 до 640 световых лет. Это молодое светило (около 10 миллионов лет), но считается, что оно достигло фазы выгорания углерода. Уже в течение одного-двух тысячелетий мы сможем полюбоваться взрывом сверхновой.
Влияние на Землю
Сверхновая звезда, взорвавшись поблизости, естественно, не может не повлиять на нашу планету. Например, Бетельгейзе, взорвавшись, увеличит яркость примерно в 10 тысяч раз. Несколько месяцев звезда будет иметь вид сияющей точки, по яркости подобной полной Луне. Но если какой-либо полюс Бетельгейзе будет обращён на Землю, то она получит от звезды поток гамма-лучей. Усилятся полярные сияния, уменьшится озоновый слой. Это может оказать очень негативное влияние на жизнь нашей планеты. Всё это только теоретические расчёты, каким же фактически будет эффект взрыва этого супергиганта, точно сказать нельзя.
Смерть звезды, так же, как и жизнь, иногда бывает очень красивой. И пример тому – сверхновые звёзды. Их вспышки мощны и ярки, они затмевают все светила, что расположены рядом.
Источник
Рядом с Землей взорвались четыре сверхновые звезды. Как это на нас повлияет?
Американские ученые выяснили, что за последние 40 тыс. лет вблизи Земли вспыхнули четыре сверхновые, которые могли повлиять на климат планеты. Объясняем, что это значит.
Какие сверхновые взорвались около Земли?
Согласно новому исследованию как минимум всемь звезд могли потенциально взорваться рядом с нашей планетой. Однако четыре из них оказались наиболее подходящими кандидатами.
Один из взрывов бывшей звезды в созвездии Вела произошел на расстоянии 815 световых лет от Земли 13 тысяч лет назад. Следом за этим собитием на Земле увеличилась концентрация углерода-14 на целых 3%. На основании этого можно сделать вывод, что взрывы ближайших сверхновых оказывают влияние на Землю.
Почему вообще взрываются звезды?
Взрыв звезды или сверхновой может произойти, только если тело будет массой больше 20 масс Солнца. После это начинается коллапса её ядра: он происходит после того, как в нём истощается топливо для поддержания термоядерных реакций.
С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила каждого взрыва превышала мощность взрыва обычной сверхновой примерно в 10 раз, а энергия взрыва превышала 10 45 джоулей. К тому же многие из этих взрывов сопровождались длинными гамма-всплесками.
Сегодня термин «гиперновая» используется также для описания взрывов звёзд с массой в 100—150 и более солнечных масс.
Гиперновые могут создать серьёзную угрозу Земле вследствие характерной для них гамма-лучевой вспышки, но в настоящее время вблизи Солнечной системы нет столь опасных звёзд. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды недалеко от Солнечной системы, и удар по Земле гамма-лучевым потоком от этой гиперновой оказался столь мощным, что он вызвал Ордовикско-силурийское вымирание (исчезли более 60 % видов морских беспозвоночных).
Как взрывы сверхновых влияют на нашу планету?
Такие звезды, которые взрываются рядом с нашей планетой, называют околоземными сверхновыми. Это такие вспышки сверхновой звезды, которые происходят на достаточно малом расстоянии от Земли (по различным оценкам, менее 100 св. лет), чтобы оказать заметное воздействие на ее биосферу.
Статистические расчёты показывают, что вспышка сверхновой происходит в радиусе 10 парсек от Земли каждые 240 миллионов лет. Основным фактором воздействия сверхновой на биосферу планеты земного типа являются гамма-лучи.
В случае с Землёй, гамма-лучи могут стать катализатором химической реакции в верхних слоях атмосферы Земли, в результате которой молекулярный азот окислится, что приведёт к уменьшению озонового слоя.
В свою очередь, это сделает биосферу Земли уязвимой для ультрафиолетового излучения и космических лучей. Особенно сильно пострадают фитопланктон и биоценозы коралловых рифов, что значительно обеднит морские пищевые цепочки.
Согласно оценкам, сверхновая II типа должна вспыхнуть ближе 8 парсек (26 световых лет) от Земли, чтобы толщина озонового слоя уменьшилась наполовину. Подобные оценки основываются на моделировании атмосферы и единственном измеренном потоке излучения от SN 1987A, сверхновой II типа, вспыхнувшей в 1987 году в Большом Магеллановом Облаке.
Изучение продуктов распада короткоживущих радиоактивных изотопов показывает, что близкая сверхновая существенно повлияла на элементный состав Солнечной системы 4,5 миллиарда лет назад, и, возможно, даже вызвала формирование нашей планетной системы. Синтез тяжёлых элементов в сверхновых в ходе эволюции Вселенной сделал возможным существование на Земле жизни.
Может ли меняться климат при взрывах сверхновых?
Согласно новому исследованию ученых из Университета Колорадо в Боулдере, США, взрывы сверхновых и правда оказывают влияние на климат Земли.
Исследователи проанализировали образцы древесины на наличие изотопа углерода-14, который образуется, когда космические лучи атакуют атмосферу Земли.
В годичных кольцах деревьев обычно накапливается одно и то же фоновое содержание изотопа углерода, однако специалисты выявили несколько пиков, когда концентрация углерода-14 резко возрастала. Некоторые ученые предполагали, что пики связаны с солнечными вспышками.
Отметим, что в незначительных количествах этот изотоп всегда присутствует в атмосфере, образуясь под действием космических лучей. Живые организмы включают его в состав своих тканей, и лишь после смерти, пока распад углерода-14 продолжается, его концентрация постепенно снижается. Этот процесс служит основой радиоуглеродного метода датирования.
Соответственно те пики концентрации углерода-14 ученые решили связать со сверхновыми и проверили, происходили ли взрывы звезд рядом с Землей за последние 40 тысяч лет. Эксперты выявляли их по оставшимся после вспышки туманностям.
В итоге были выявлены восемь сверхновых, подходящих под критерии. Наиболее подходящими кандидатами оказались четыре из них. Например, одна из вспышек произошла 13 тысяч лет назад на расстоянии 815 световых лет от Земли. В результате вещество увеличилось в концентрации на 3%.
Источник
История сверхновых – фейерверков нашей Галактики!
Когда я убедил себя, что ни одна звезда подобного типа ранее не сияла, я пришёл в такое недоумение из-за неправдоподобности случившегося, что стал сомневаться в собственных глазах.
— Тихо Браге
Когда мы смотрим на галактики, разбросанные по Вселенной, мы видим, что периодически – примерно раз в столетие – яркая звезда так сильно разгорается, что на некоторое время может затмить всю остальную галактику!
Это, конечно же, не яркость звезды увеличивается – это самые атомы, составляющие звезду, вовлекаются в неконтролируемую реакцию ядерного синтеза, и приводят к печально известному явлению по имени сверхновая!
В рамках самого большой из научных полос невезения мы не видели взрыв сверхновой в нашей галактике со времён изобретения телескопа! Последний раз она рванула в 1604 году, и с тех пор уже давно исчезла из вида. Хорошо, что мы можем изучать эти объекты не только по видимому свету: мы можем развернуть множество чувствительных к разным длинам волн телескопов в те области неба, где зарегистрировали сверхновые, и посмотреть, как они выглядят сегодня!
Сверхновая 1604 года была последней, видимой с Земли невооружённым глазом, и здесь она показана при помощи комбинации видимого света, рентгеновских лучей и инфракрасной съёмки. По отсутствию мощного источника рентгеновских лучей (нейтронной звезды или чёрной дыры) в центре, этот взрыв, скорее всего, был типа Ia, когда белый карлик либо сливается с другой звездой, либо получает достаточно дополнительной массы, и взрывается!
То же самое было и с предыдущей, SN 1572.
Не представляющие ничего особенного на вид, сверхгорячие остатки взорвавшейся звезды разбросало в космос с умопомрачительными скоростями в тысячи километров в секунду, и они были настолько горячими, что испускали рентгеновское излучение! Ещё там есть пыль, распространённая по всей галактике, и она нагревается от взрыва сверхновой – именно это и светится в инфракрасном диапазоне.
Последняя сверхновая до этого? Придётся вернуться аж до 1181 года, и мы до сих пор не уверены, что нашли её останки. Но мы точно нашли ту, что наблюдали до этого: SN 1054.
Эти остатки, как можно заметить, выглядят совершенно не так, как предыдущие, и тому есть причина: это сверхновая совершенно другого типа! Крабовидная туманность, также известная, как Мессье 1, не была образована слишком массивным белым карликом, а появилась из-за сверхмассивной звезды, сжёгшей всё своё топливо и погибшей в коллапсе ядра, что привело к выбросу материи на десятки солнечных масс!
Коллапс ядра этой звезды создал пульсар. Пульсары – одни из самых удивительных часов Вселенной, их превосходят по точности лишь атомные часы на Земле!
До этого была самая яркая из всех зафиксированных на Земле сверхновых в 1006-м.
К этому моменту вы уже должны сообразить, что когда-то это был белый карлик, а не сверхмассивная звезда. Через 1000 лет пузырь, созданный взрывом, разросся до размеров в несколько световых лет, и если бы наша звезда так рванула, то край пузыря уже был бы на полпути к Альфа Центавра!
До 1006 года был один взрыв в 393 году, который мы, возможно, нашли, ещё один в 386, который вроде бы нашли, но скорее всего, его не было, и самая старая сверхновая, из записанных и подтверждённых: 185 года!
Глядя на рентгеновское изображение 2000 лет спустя, можно сказать, что это был белый карлик, а не сверхмассивная звезда.
Но рассматривая эти изображения, я подумал: насколько интересно будет изучить эти остатки только лишь в видимом свете, будто бы фотографии космических фейерверков в ускоренной съёмке? Давайте посмотрим.
Через почти 2000 лет, у остатков сверхновой RCW 86 (от сверхновой 185 года) в видимом диапазоне всё ещё заметен внешний контур пузыря (красное, вверху). Как и у последней стадии фейерверка, это последняя часть, которую будет видно человеческим взглядом (голубое – это рентгеновский газ).
Но, оказывается, тысяча лет мало что меняют.
Сверхновая 1006 еле различима в видимом свете, видна лишь тонкая полоска и очень тусклый газ по внешнему контуру (и конечно, все остальные звёзды!). Но сверхновая 1054, о которой мы говорили, как об остатках сверхмассивной звезды, а не белого карлика, представляет собой совершенно другое.
Помните то великолепное изображение Крабовидной туманности, которое я вам показывал? Это фотография исключительно в видимом свете! Внешние слои газа, богатого самыми лёгкими из тяжёлых элементов – кислородом, углеродом, азотом – создают красивые и контрастные цвета в туманности, когда они перегреваются и разбрызгиваются по межзвёздному пространству.
Но фотографии, сделанные на множестве других длин волн, могут рассказать нам гораздо больше, как вы можете видеть — от ярких источников рентгеновского излучения в ядре звёзд до тёплой пыли, наблюдаемой в инфракрасные телескопы. В случае Крабовидной туманности, видимый свет, тем не менее, много о чём может рассказать, благодаря большому количеству газа и пыли, а также энергии, вышедшей вместе с ними.
Сверхновая 1572, у которой почти не было газа и пыли, представляет собой другой случай.
Ведь должны же были найти остатки солнцеподобной звезды, взорванной её компаньоном, превратившимся в сверхновую порядка 500 лет назад? Ни следа.
Так что варианты бывают разные, и отличным примером будет сверхновая 1604 года.
Ни полоска, ни пузырь, а лишь небольшой район, где из остатков видно немного светящегося газа.
Не хватает лишь снимков сверхмассивного взрыва, где горячая видимая пыль была сметена. Как бы он выглядел?
С 1604 года у нас в Галактике не случалось сверхновых, видимых с Земли невооружённым глазом. Но в конце 17-го века появилась одна сверхновая, и хотя в оптическом диапазоне её остатки еле видны, она представляет собой самый громкий источник в радиодиапазоне в нашей галактике: Кассиопея А!
Она расположена в 11 000 световых годах от нас, размер её остатков уже занял 10 световых лет в поперечнике — она выросла больше, чем Крабовидная туманность, при этом росла в три раза меньшее время! Раз уж это самый сильный радиоисточник, то там наверно должна быть какая-то фантастическая нейтронная звезда или чёрная дыра.
Но я хотел показать вам фейерверк.
На следующем фото — не визуализация и не симуляция. Несравненный телескоп им. Хаббла сделал отличную фотографию с длинной выдержкой, запечатлевшую видимый свет от остатков сверхновой, который нужно посмотреть, чтобы понять, почему я называю эти взрывы «космическими фейерверками».
Это потрясающе! Если у вас есть время, рекомендую поиграться с крупномасштабной версией фотографии. Я решил показать вам её по частям и прокомментировать наиболее интересные её фрагменты.
Обратимся к пузырю.
Теперь посмотрим на трёхслойную структуру поверх пузыря. Обратите внимание на небольшие «колонны», некоторые регионы, в которых плотность материи выше, чем у других.
А теперь увеличим зеленоватую область.
Надеюсь, вам понравились фейерверки! Слишком много времени прошло с момента появления сверхновой в нашей Галактике. Увидим ли мы новую при нашей жизни? Как заключает граф Монте-Кристо:
Вся человеческая мудрость содержится в двух словах: ждать и надеяться.
Источник