Меню

Взрыв вселенной сколько лет назад

Вселенная: от Большого взрыва до наших дней

Согласно общепринятой теории: в начале ничего не было, но затем, около 13,7 миллиардов лет назад произошел Большой взрыв и образовалась Вселенная.

Мы до сих пор не знаем точно при каких условиях это произошло. Но с помощью наблюдений и физики элементарных частиц исследователи смогли составить приблизительный график основных событий в жизни космоса. Здесь мы рассмотрим некоторые из наиболее важных исторических моментов в нашей Вселенной, от ее младенчества до возможной гибели.

Большой взрыв

Все начинается с Большого взрыва, который «является моментом времени, а не точкой в ​​пространстве», — сказал в интервью Live Science Шон Кэрролл, физик-теоретик из Калифорнийского технологического института. В частности, это момент, когда началось само время, момент, с которого были подсчитаны все последующие моменты. Несмотря на свое известное прозвище, Большой взрыв на самом деле не был взрывом, скорее это был период, когда Вселенная была чрезвычайно горячей и плотной, и пространство начало расширяться во всех направлениях одновременно. Хотя модель Большого взрыва утверждает, что Вселенная была бесконечно малой точкой бесконечной плотности, это всего лишь допущение (мы не знаем точно, что происходило тогда).

Эра космической инфляции

В течение первых 0,0000000000000000000000000000001 секунды после Большого взрыва космос экспоненциально увеличился в размерах, разобщая области Вселенной, которые ранее были в тесном контакте. Эта эра, известная как инфляция, остается гипотетической, но космологам нравится идея, потому что она объясняет, почему обширные области пространства кажутся такими похожими друг на друга, несмотря на то, что их разделяют огромные расстояния.

Кварк-глюонная плазма

Спустя несколько миллисекунд после Большого взрыва, ранняя Вселенная была очень горячей. Учёные предполагают, что её температура была между 4 и 6 триллионами градусов по Цельсию. При таких температурах, элементарные частицы, называемые кварками, которые обычно тесно зажаты внутри протонов и нейтронов, свободно передвигались, а глюоны, являющиеся переносчиками сильного взаимодействия, были смешаны с этими кварками в первичном бульоне. Исследователям удалось создать аналогичные условия в ускорителях частиц на Земле. Но труднодостижимое состояние длилось всего несколько долей секунды, как в земных атомах, так и в ранней Вселенной.

Ранняя эпоха

На следующем этапе времени было много событий, которые начались примерно через несколько тысячных секунды после Большого взрыва. Когда космос расширялся, он остывал, и вскоре условия были достаточно мягкими, чтобы кварки могли объединиться в протоны и нейтроны. Спустя одну секунду после Большого взрыва плотность Вселенной упала настолько, что нейтрино (самые легкие и наименее взаимодействующие фундаментальные частицы) смогли улететь вперед, создавая так называемый «фон космических нейтрино», который ученым еще предстоит обнаружить.

Первые атомы

В течение первых 3 минут жизни Вселенной протоны и нейтроны сливались воедино, образуя изотоп водорода, называемый дейтерием, а также гелий и небольшое количество лития. Но как только температура упала, этот процесс прекратился. Наконец, через 380 000 лет после Большого взрыва стало достаточно прохладно, чтобы водород и гелий могли соединиться со свободными электронами, создав первые нейтральные атомы. Фотоны, которые ранее сталкивались с электронами, теперь могли двигаться без помех, создавая реликтовое излучение.

Читайте также:  Теория стационарной вселенной строение

Темные века

В течение очень долгого времени между 380 000 лет и 550 млн лет после Большого взрыва во Вселенной ничто не излучало свет. Она была заполнена водородом и гелием, реликтовым излучением и излучением атомарного водорода на волне 21 см. Звезды, квазары и другие яркие источники отсутствовали. Нам чрезвычайно сложно изучать этот временной отрезок в жизни Вселенной, потому что все наши знания исходят от звездного света.

Первые звезды

Примерно между 550 млн лет и 800 млн лет после Большого взрыва плотность молекулярных облаков увеличивались достаточно, чтобы они могли коллапсировать в плазменный шары (первые звезды). Вселенная вступила в новый период, известный как «реионизация», потому что горячие фотоны, излучаемые ранними звездами и галактиками, делили нейтральные атомы водорода в межзвездном пространстве на протоны и электроны, процесс, известный как ионизация.

Возникновение галактик

Маленькие ранние галактики начали сливаться в более крупные галактики, и примерно через 1 миллиард лет после Большого взрыва в их центрах образовались сверхмассивные черные дыры.

Средние годы Вселенной

Вселенная продолжала развиваться в течение следующих нескольких миллиардов лет. Участки более высокой плотности из первичной вселенной гравитационно притягивали материю к себе. Они медленно превращались в галактические скопления и длинные нити газа и пыли, создавая прекрасную волокнистую космическую сеть, которую можно увидеть сегодня.

Рождение Солнечной системы

Около 4,5 миллиардов лет назад из-за гравитационного коллапса небольшой части гигантского межзвёздного молекулярного облака. Большая часть вещества оказалась в гравитационном центре коллапса с последующим образованием звезды — Солнца. Вещество, не попавшее в центр, сформировало вращающийся вокруг него протопланетный диск, из которого в дальнейшем сформировались планеты, их спутники, астероиды и другие малые тела Солнечной системы.

Земля и человечество

В этом третьем, водном мире, между 3,5 и 3,8 миллиардами лет назад появились крошечные, простые микробы. Со временем эти формы жизни эволюционировали в различных морских монстров и гигантских, поедающих листья динозавров. В конце концов, около 200 000 лет назад, появились мы — существа способные любоваться нашей таинственной Вселенной и пытающиеся узнать, как все произошло.

Конец или нет?

Конечно, это не конец. Физики до сих пор не знают, что ждет Вселенную. Это зависит от темной энергии, все еще таинственной силы, разрывающей космос, свойства которой еще не были хорошо изучены.

В одном возможном будущем Вселенная будет продолжать расширяться вечно, достаточно долго, чтобы все звезды во всех галактиках исчерпали топливо, и даже черные дыры испарились бы в ничто, оставив позади мертвый космос, пропитанный инертной энергией. Или гравитация в конце концов преодолеет силу расширения темной энергии, объединив всю материю обратно в своего рода обратный Большой взрыв, известный как Большое сжатие.

Источник

Физики считают, что именно это и произошло в первые три минуты существования Вселенной

Около 13,8 миллиарда лет назад произошло нечто загадочное, получившее название «Большой взрыв». Произошло массовое расширение, которое взорвало возможную сингулярность, как воздушный шар, в конечном итоге породив нашу Вселенную. Поскольку каждому семени нужно определенное время, чтобы превратиться в полноценное растение, на создание Вселенной в том виде, в каком мы ее знаем сегодня, потребовалось чуть больше семи дней. Но именно в первые 3 минуты происходило больше всего главных событий. Итак, вот что, по мнению физиков, произошло в первые 3 минуты после Большого взрыва!

Читайте также:  Жизнь звезд во вселенной проект

Планковская эпоха

Вскоре после Большого взрыва первым возникшим периодом была эпоха Планка. В этот конкретный период времени температура Вселенной была 10 32 К, настолько высока, что все четыре фундаментальные силы (гравитационная сила, электромагнитная сила, слабая сила и сильная сила) природы существовали вместе как одна суперсила. Эта эпоха длилась 10 -43 секунды. Поскольку в масштабе Планка современные физические теории не могут быть применены для расчета того, что произошло, о физике эпохи Планка известно очень мало.

Эпоха Великого объединения

Эпоха ТВО или «Великой объединенной теории» началась, когда Вселенной было всего 10 -43 секунды, и продолжалась до 10 -36 секунд после Большого взрыва. После эпохи Планка фундаментальная сила гравитации отделилась от трех других фундаментальных сил стандартной модели. Итак, электрослабое взаимодействие, сильное взаимодействие и электромагнитное взаимодействие были единым целым в эпоху ТВО. Более того, к концу этой эпохи температура упала до 10 29 K с 10 32 K.

Инфляционная и электромагнитная эпоха

Электрослабая эпоха стала третьей по счету после Большого Взрыва. В эту эпоху сильная сила отделилась от двух других сил, таким образом оставив позади слабую и электромагнитную силу как единую силу. Более того, космическая инфляция началась, когда Вселенной было всего 10 -33 секунды. Во время инфляции Вселенная расширялась в геометрической прогрессии и выросла от размера протона до размера, эквивалентного кулаку. Во время инфляции вселенная расширялась со скоростью, превышающей скорость света, однако точная физика этого интенсивно ускорившегося расширения до сих пор не ясна.

Космическая инфляция закончилась очень скоро, и позже Вселенная начала нормально расширяться. Сейчас Вселенной 10 -32 секунды, температура упала до 100 триллионов триллионов кельвинов и, что самое важное, также сформировались W и Z бозоны.

Кварковая эпоха

Электрослабая эпоха закончилась через 10 -12 секунд после Большого взрыва, а затем началась эпоха кварков. К тому времени Вселенная достаточно остыла, чтобы поле Хиггса имело положительное значение. Это привело к тому, что электромагнитная сила и слабая сила отделились друг от друга. Итак, теперь все четыре фундаментальные силы обрели свою индивидуальную идентичность. Все доступные частицы могут взаимодействовать с полем Хиггса и могут набирать массу. Однако температура все еще очень высока для того, чтобы кварки слились и образовали адроны, такие как протоны и нейтроны. В стандартной модели физики кварки являются одним из самых крошечных объектов.

Адронная эра

Адроны — это класс частиц, состоящих из двух или более кварков. Вскоре после того, как эпоха кварков закончилась, эра адронов началась через 1 микросекунду после Большого взрыва. К этому времени температура упала до такой степени, что кварки предыдущей эры могли объединиться в адроны. Хотя небольшая асимметрия вещества и антивещества на более ранних этапах привела к устранению антиадронов, все же большинство пар адрон/антиадрон уничтожили друг друга.

Читайте также:  Основные законы вселенной лора шереметьева

Так что к концу этого периода в основном остались только легкие стабильные адроны: протоны и нейтроны. Эпоха адронов закончилась через 1 секунду после Большого взрыва.

Лептонная эпоха

Когда Вселенная постарела на одну секунду, ее температура стала достаточно благоприятной для образования другого класса элементарных частиц — лептонов. Лептоны — это своего рода элементарные частицы в природе, и поэтому они больше не состоят из каких-либо составляющих частиц, таких как адроны. Электрон — классический пример лептона. Таким образом, к этому времени начали формироваться лептоны и антилептоны, и это производство продолжалось 10 секунд. Лептоны и антилептоны оставались в тепловом равновесии, поскольку энергия фотонов все еще была достаточно высокой для образования электрон-позитронных пар. Однако Вселенная все еще оставалась непрозрачной, поскольку эти свободные электроны могли легко рассеивать фотоны.

Начало нуклеосинтеза

К настоящему времени Вселенная содержит протоны, нейтроны, электроны и фотоны. Фотоны превосходили массивные частицы в миллиарды раз. Все четыре основные силы приобрели свою современную форму. Теперь настало время для начала самого важного процесса нуклеосинтеза.

Проще говоря, нуклеосинтез — это процесс, в котором новые атомные ядра образуются из ранее существовавших нуклонов и меньших ядер. Это процесс, посредством которого образуется большинство более тяжелых элементов в нашей Вселенной.

Так что теперь, в возрасте 2 минут, температура Вселенной упала ниже 1,2 миллиарда градусов Кельвина. При этой температуре средняя энергия фотона составляла 1,8 х 10 -14 Дж, что было эквивалентно энергии связи ядер дейтерия. Ядро дейтерия состоит из протона и нейтрона, удерживаемых вместе сильным ядерным взаимодействием. Итак, через две минуты после Большого взрыва дейтерий образовался в результате слияния протонов и нейтронов. Это произошло впервые после Большого Взрыва, когда Вселенная содержала ядра более сложные, чем один протон.

Наконец, через 3 минуты после Большого взрыва температура Вселенной упала ниже 1 миллиарда градусов Кельвина. При этой температуре средняя энергия фотонов составляла 1,5 х 10 -14 джоулей, что эквивалентно энергии связи ядер гелия. Итак, в возрасте 3 минут дейтерий, протоны и нейтроны объединились с помощью различных возможных процессов, чтобы сформировать ядра гелия.

В двух словах, в первые три минуты после Большого Взрыва протоны и нейтроны начали сливаться вместе, образуя дейтерий, а атомы дейтерия затем соединились друг с другом, образуя гелий-4. За этими тремя минутами последовал ряд различных эпох и разносторонних процессов нуклеосинтеза, которые сформировали вселенную, в которой мы живем сегодня. Но первые три минуты сформировали период, который дал нам самые фундаментальные элементы нашего существования, т.е. водород и гелий, и подготовить почву для продвинутых процессов. Это, несомненно, делает первые три минуты после большого взрыва самыми важными минутами в истории эволюции нашей Вселенной.

Источник

Adblock
detector