Меню

Ядерный двигатель для космоса что это

Ядерный двигатель для космоса что это

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Эта статья была опубликована в журнале OYLA №4(20). Оформить подписку на печатную и онлайн-версию можно здесь.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс, который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.

RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Читайте также:  Кто первым вышел открытый космос

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Источник

Ядерные двигатели для космических кораблей

Россия была и сейчас остается лидером в области ядерной космической энергетики. Опыт проектирования, строительства, запуска и эксплуатации космических аппаратов, оснащенных ядерным источником электроэнергии, имеют такие организации, как РКК «Энергия» и «Роскосмос». Ядерный двигатель позволяет эксплуатировать летательные аппараты многие годы, многократно повышая их практическую пригодность.

Историческая летопись

Использование ядерной энергетики в космосе перестало быть фантастикой еще в 70-х годах прошедшего столетия. Первые ядерные двигатели в 1970-1988 запускались в космос и успешно эксплуатировались на космических аппаратах (КА) наблюдения «УС-А». В них применялась система с термоэлектрической ядерно-энергетической установкой (ЯЭУ) «Бук» электрической мощностью 3 кВт.

В 1987-1988 два аппарата «Плазма-А» с термоэмиссионной ЯЭУ «Топаз» мощностью 5 кВт прошли летно-космические испытания, во время которых впервые было осуществлено питание электроракетных двигателей (ЭРД) от ядерного источника энергии.

Выполнен комплекс наземных ядерно-энергетических испытаний термоэмиссионной ядерной установкой «Енисей» мощностью 5 кВт. На основе этих технологий разработаны проекты термоэмиссионных ЯЭУ мощностью 25-100 кВт.

МБ «Геркулес»

РКК «Энергия» в 70-х приступила к научно-практическим изысканиям, целью которых было создать мощный ядерный космический двигатель для межорбитального буксира (МБ) «Геркулес». Работы позволили сделать задел на многие годы в части ядерной электроракетной двигательной установки (ЯЭРДУ) с термоэмиссионной ЯЭУ мощностью несколько – сотен киловатт и электроракетных двигателей единичной мощностью десятки и сотни киловатт.

Читайте также:  Эскиз костюма тема космос

Проектные параметры МБ «Геркулес»:

  • полезная электрическая мощность ЯЭУ – 550 кВт;
  • удельный импульс ЭРДУ – 30 км/с;
  • тяга ЭРДУ – 26 Н;
  • ресурс ЯЭУ и ЭРДУ – 16 000 ч;
  • рабочее тело ЭРДУ – ксенон;
  • масса (сухая) буксира – 14,5-15,7 т, в том числе ЯЭУ – 6,9 т.

Новейшее время

В XXI веке настало время создать новый ядерный двигатель для космоса. В октябре 2009 года на заседании Комиссии при президенте РФ по модернизации и технологическому развитию экономики России был официально утвержден новый российский проект «Создание транспортно-энергетического модуля с использованием ядерной энергодвигательной установки мегаваттного класса». Головными разработчиками являются:

  • Реакторной установки – ОАО «НИКИЭТ».
  • Ядерно-энергетической установки с газотурбинной схемой преобразования энергии, ЭРДУ на основе ионных электроракетных двигателей и ЯЭРДУ в целом – ГНЦ «Исследовательский центр им. М. В. Келдыша», который является также ответственной организацией по программе разработки транспортно-энергетического модуля (ТЭМ) в целом.
  • РКК «Энергия» в качестве генерального конструктора ТЭМ должна разработать автоматический аппарат с этим модулем.

Характеристики новой установки

Новый ядерный двигатель для космоса Россия планирует запустить в коммерческую эксплуатацию в ближайшие годы. Предполагаемые характеристики газотурбинной ЯЭРДУ следующие. В качестве реактора используется газоохлаждаемый реактор на быстрых нейтронах, температура рабочего тела (смесь He/Xe) перед турбиной — 1500 К, КПД преобразования тепловой в электрическую энергию — 35%, тип холодильника-излучателя – капельный. Масса энергоблока (реактор, радиационная защита и система преобразования, но без холодильника-излучателя) – 6 800 кг.

Космические ядерные двигатели (ЯЭУ, ЯЭУ совместно с ЭРДУ) планируется использовать:

  • В составе будущих космических транспортных средств.
  • Как источников электроэнергии для энергоемких комплексов и космических аппаратов.
  • Для решения первых двух задач в транспортно-энергетическом модуле по обеспечению электроракетной доставки тяжелых космических кораблей и аппаратов на рабочие орбиты и дальнейшее длительное энергоснабжение их аппаратуры.

Принцип работы ядерного двигателя

Основывается либо на синтезе ядер, либо на использовании энергии деления ядерного топлива для формирования реактивной тяги. Различают установки импульсно-взрывного и жидкостного типов. Взрывная установка выбрасывает в космос миниатюрные атомные бомбы, которые детонируя на расстоянии нескольких метров, взрывной волной толкают корабль вперед. На практике такие устройства пока не используются.

Жидкостные ядерные двигатели, напротив, давно разработаны и испытаны. Еще в 60-х годах советские специалисты сконструировали работоспособную модель РД-0410. Подобные системы разрабатывались и в США. Их принцип основан на нагревании жидкости ядерным мини-реактором, она превращается в пар и формирует реактивную струю, которая и толкает космический аппарат. Хотя устройство называют жидкостным, в качестве рабочего тела, как правило, используют водород. Еще одно назначение ядерных космических установок – питание электрической бортовой сети (приборов) кораблей и спутников.

Тяжелые телекоммуникационные аппараты глобальной космической связи

На данный момент ведутся работы по ядерному двигателю для космоса, который планируется использовать в тяжелых аппаратах космической связи. РКК «Энергия» были выполнены исследования и проектные разработки системы глобальной космической связи экономически конкурентоспособной с дешевой сотовой связью, что предполагалось достичь переносом «телефонной станции» с Земли в космос.

Предпосылками к их созданию являются:

  • практически полное заполнение геостационарной орбиты (ГСО) работающими и пассивными спутниками;
  • исчерпание частотного ресурса;
  • положительный опыт создания и коммерческого использования информационных геостационарных спутников серии «Ямал».

При создании платформы «Ямал» новые технические решения составили 95%, что и позволило таким аппаратам стать конкурентоспособными на мировом рынке космических услуг.

Предполагается замена модулей с технологическим связным оборудованием примерно каждые семь лет. Это позволило бы создавать системы из 3-4 тяжелых многофункциональных спутников на ГСО с увеличением потребляемой ими электрической мощности. Первоначально были спроектированы КА на основе солнечных батарей мощностью 30-80 кВт. На следующем этапе в качестве источника электроэнергии планируется использовать ядерные двигатели на 400 кВт с ресурсом до одного года в транспортном режиме (для доставки базового модуля на ГСО) и 150-180 кВт в режиме длительного функционирования (не менее 10-15 лет).

Ядерные двигатели в системе антиметеоритной защиты Земли

Выполненные РКК «Энергия» в конце 90-х проектные исследования показали, что в создании антиметеоритной системы защиты Земли от ядер комет и астероидов ядерно-электрические установки и ЯЭРДУ могут быть использованы для:

  1. Создания системы мониторинга траекторий астероидов и комет, пересекающих орбиту Земли. Для этого предлагается расставить специальные космические аппараты, оснащенные оптической и радиолокационной аппаратурой для обнаружения опасных объектов, вычисления параметров их траекторий и первичного исследования их характеристик. В системе может быть задействован ядерный космический двигатель с двухрежимной термоэмиссионной ЯЭУ мощностями от 150 кВт. Ее ресурс должен быть не менее 10 лет.
  2. Испытания средств воздействия (взрыв термоядерного устройства) на полигонном безопасном астероиде. Мощность ЯЭРДУ для доставки испытательного устройства к астероиду-полигону зависит от массы доставляемого полезного груза (150-500 кВт).
  3. Доставки штатных средств воздействия (перехватчика суммарной массой 15-50 т) к приближающемуся к Земле опасному объекту. Потребуется ядерный реактивный двигатель мощностью 1-10 МВт для доставки к опасному астероиду термоядерного заряда, поверхностный взрыв которого за счет реактивной струи материала астероида сможет отклонить его от опасной траектории.
Читайте также:  Энергетические каналы с космосом

Доставка исследовательского оборудования в дальний космос

Доставка научного оборудования к космическим объектам (дальним планетам, периодическим кометам, астероидам) может осуществляться с использованием космических ступеней на основе ЖРД. Применять ядерные двигатели для космических аппаратов целесообразно, когда ставится задача выхода на орбиту спутника небесного тела, прямого контакта с небесным телом, отбора проб веществ и прочих исследований, требующих увеличения массы исследовательского комплекса, включения в него посадочной и взлетной ступеней.

Параметры двигателей

Ядерный двигатель для космических кораблей исследовательского комплекса позволит расширить «окно старта» (вследствие управляемой скорости истечения рабочего тела), что упрощает планирование и снижает цену проекта. Исследования, выполненные РКК «Энергия», показали, что ЯЭРДУ 150 кВт с ресурсом до трех лет является перспективным средством доставки космических модулей в пояс астероидов.

В то же время доставка исследовательского аппарата на орбиты дальних планет Солнечной системы требует увеличения ресурса такой ядерной установки до 5-7 лет. Доказано, что комплекс с ЯЭРДУ мощностью порядка 1 МВт в составе исследовательского КА позволит обеспечить ускоренную доставку за 5-7 лет на орбиты искусственных спутников наиболее удаленных планет, планетоходов на поверхность естественных спутников этих планет и доставку на Землю грунта с комет, астероидов, Меркурия и спутников Юпитера и Сатурна.

Многоразовый буксир (МБ)

Одним из важнейших способов повышения эффективности транспортных операций в космосе является многоразовое использование элементов транспортной системы. Ядерный двигатель для космических кораблей мощностью не менее 500 кВт позволяет создать многоразовый буксир и тем самым значительно повысить эффективность многозвенной космической транспортной системы. Особенно полезна такая система в программе обеспечения больших годовых грузопотоков. Примером может стать программа освоения Луны с созданием и обслуживанием постоянно наращиваемой обитаемой базы и экспериментальных технологических и производственных комплексов.

Расчет грузооборота

Согласно проектным проработкам РКК «Энергия», при строительстве базы на поверхность Луны должны доставляться модули массой порядка 10 т, на орбиту Луны – до 30 т. Суммарный грузопоток с Земли при строительстве обитаемой лунной базы и посещаемой лунной орбитальной станции оценивается в 700-800 т, а годовой грузопоток для обеспечения функционирования и развития базы – 400-500 т.

Однако принцип работы ядерного двигателя не позволяет разогнать транспортник достаточно быстро. Из-за длительного времени транспортировки и, соответственно, значительного времени нахождения полезного груза в радиационных поясах Земли не все грузы могут быть доставлены с использованием буксиров с ядерным двигателем. Поэтому грузопоток, который может быть обеспечен на основе ЯЭРДУ, оценивается лишь в 100-300 т/год.

Экономическая эффективность

В качестве критерия экономической эффективности межорбитальной транспортной системы целесообразно использовать значение удельной стоимости транспортировки единицы массы полезного груза (ПГ) с поверхности Земли на целевую орбиту. РКК «Энергия» была разработана экономико-математическая модель, учитывающая основные составляющие затрат в транспортной системе:

  • на создание и выведение на орбиту модулей буксира;
  • на закупку рабочей ядерной установки;
  • эксплуатационные затраты, а также расходы на проведение НИОКР и возможные капитальные затраты.

Стоимостные показатели зависят от оптимальных параметров МБ. С использованием этой модели была исследована сравнительная экономическая эффективность применения многоразового буксира на основе ЯЭРДУ мощностью порядка 1 МВт и одноразового буксира на основе перспективных жидкостных ракетных двигателей в программе обеспечения доставки с Земли на орбиту Луны высотой 100 км полезного груза суммарной массой 100 т/год. При использовании одной и той же ракеты-носителя грузоподъемностью, равной грузоподъемности РН «Протон-М», и двухпусковой схемы построения транспортной системы удельная стоимость доставки единицы массы полезного груза с помощью буксира на основе ядерного двигателя будет в три раза ниже, чем при использовании одноразовых буксиров на основе ракет с жидкостными двигателями типа ДМ-3.

Вывод

Эффективный ядерный двигатель для космоса способствует решению экологических проблем Земли, полету человека к Марсу, созданию системы беспроводной передачи энергии в космосе, реализации с повышенной безопасностью захоронения в космосе особо опасных радиоактивных отходов наземной атомной энергетики, созданию обитаемой лунной базы и началу промышленного освоения Луны, обеспечению защиты Земли от астероидно-кометной опасности.

Источник

Adblock
detector