Ядерный «Нуклон» для космического «Зевса» проходит испытания
Касаясь этого перспективного проекта, глава «Роскосмоса» заявил, что разрабатываемый в России ядерный буксир «Зевс» займется поиском жизни во Вселенной. На первом этапе планируются миссии на Марс и Венеру. «А в будущем, после создания термоядерных возможностей, при движении за пределы Солнечной системы станет важнейшей задачей обнаружить и понять: одни ли мы в космосе, или есть иная жизнь», — цитирует РИА Новости сказанное Дмитрием Рогозиным.
Тема ядерной энергетики для освоения космического пространства была обсуждаемой и на совещании с участием президента России, которое прошло в Самаре 12 апреля 2021 года — в знаковый день 60-летия первого полета в космос. Тогда главе государства доложили, что некоторые элементы ядерного буксира уже существуют «в железе».
Напомним: в 2010 году правительство России выделило первые 500 миллионов рублей на создание «космического корабля с атомным реактором». А точнее — с ядерной энерго-двигательной установкой мегаваттной мощности. Такой, чтобы могла служить тяговым (или разгонным) двигателем в полете и быть при необходимости источником энергии для орбитальной станции или посадочного модуля.
К решению этой задачи официально подключились государственная корпорация «Росатом» и Федеральное космическое агентство (ныне — ГК «Роскосмос»). Как считали тогда и считают сегодня, такие двигатели, особым образом сконструированные для работы в условиях невесомости, неизбежно потребуются для длительных космических миссий — межпланетных полетов, долговременных станций на земной и лунной орбитах, а в перспективе — для стационарных баз на Луне и других объектах Солнечной системы…
Сама по себе идея использовать ядерные двигатели на космических аппаратах родилась не на пустом месте и уходит корнями в начало 60-х. Уже тогда академики Мстислав Келдыш, Сергей Королев и Игорь Курчатов — первые лица советской космической программы и советского Атомного проекта — выдвигали подобные задачи. Аналогичные разработки с прицелом на создание новых вооружений велись и в США.
Советский Союз вывел с 1970 по 1988 годы на различные орбиты 32 космических аппарата с термоэлектрической ядерной энергоустановкой (принцип ее работы основан на превращении энергии распада атома в электрическую энергию). Те установки имели сравнительно небольшую мощность и ограниченный во времени срок службы, после чего сходили с орбиты, создавая головную боль — куда упадут радиоактивные обломки? — для наземных служб слежения.
В конце 80-х была заключена договоренность не запускать больше спутники с такими энергоустановками. Но сейчас, в связи с активной подготовкой международных экспедиций к Луне и Марсу, прежние запреты могут быть пересмотрены.
Именно с таким расчетом за создание общей концепции ТЭМ взялись специалисты Центра имени Келдыша («Роскосмос»), а ядерную установку для него стали проектировать в московском НИКИЭТ («Росатом») с участием подмосковного НПО «Луч», где занялись разработкой особых видов ядерного топлива. Весь проект, рассчитанный на 9 лет, предусматривал финансирование в объеме 17 миллиардов рублей. К 2012 году обещали эскизный проект, а дальше — техническое проектирование и моделирование всей системы на суперкомпьютерах. Отработка ядерного реактора как двигательной установки для ТЭМ — 2015 год.
Время от времени в печати проскальзывали отрывочные сведения о состоянии работ, а потом под предлогом режима секретности и они перестали появляться. Вновь об этой теме заговорили на уровне первых лиц «Роскосмоса» и «Росатома» летом-осенью 2020 года. И тогда же стало известно, что к проекту активным образом подключилось конструкторское бюро «Арсенал», расположенное в Петербурге и располагающее своей производственной базой.
В декабре 2020 года с «Арсеналом» заключён контракт на участие в проекте «Зевс-Нуклон». По сведениям из открытых источников, контракт оценен в 4, 2 миллиарда рублей и предусматривает создание аванпроекта, в котором должны быть учтены-интегрированы все наиболее значимые наработки, полученные в организациях «Росатома» и «Роскосмосе» в рамках общего проекта. Оговорено, что указанные в контракте работы предстоит завершить к июлю 2024 года.
Досье «РГ»
Конструкторского бюро «Арсенал» известно пилотными разработками в области космической техники с конца 60-х годов прошлого века. Именно здесь созданы космические аппараты радиолокационной разведки «УС-А» с ядерной энергоустановкой. Их летно-конструкторские испытания начались в 1973 году, а в 1975-м они приняты в эксплуатацию. Эта и другие успешно выполненные работы дали основание закрепить за КБ «Арсенал» статус головного предприятия по созданию космических комплексов наблюдения.
Источник
Проект ТЭМ: ядерный реактор и электроракетный двигатель для космоса
Один из самых смелых проектов последних лет в сфере космических технологий развивается, и появляются поводы для хороших новостей. На днях стало известно о завершении работ по проекту «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса». Теперь ученым предстоит провести ряд последующих работ, и конечным результатом станет появление полноценного модуля, пригодного к эксплуатации.
Отчет о работе
В конце июля «Роскосмос» утвердил отчет за 2018 г., указывающий основные направления деятельности и успехи организации. Среди прочего в отчете упомянут проект «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса», разрабатывавшийся в рамках Госпрограммы «Космическая деятельность России на 2013-2020 годы».
Согласно отчету, выполнение этого проекта было завершено в прошлом году. В рамках этих работ подготовлена конструкторская документация, изготовлены и испытаны отдельные изделия. Пока речь идет о компонентах будущего макета наземного прототипа транспортно-энергетического модуля (ТЭМ).
На этом работы по созданию ТЭМ не останавливаются. Все дальнейшие мероприятия будут осуществляться в рамках существующей федеральной космической программы. К сожалению, в отчете «Роскосмоса» не приводятся технические подробности проекта ТЭМ в его нынешнем виде, а также не указываются сроки выполнения работ. Впрочем, эти данные известны из других источников.
История вопроса
Согласно отчету «Роскосмоса», работы по теме ТЭМ продолжаются и скоро должны выйти на новый этап. Это означает, что планы по созданию принципиально новой ракетно-космической техники, утвержденные почти 10 лет назад, будут выполнены в обозримом будущем.
Идея транспортно-энергетического модуля на основе ядерной энергодвигательной установки (ЯЭДУ) в ее нынешнем виде была предложена в 2009 г. Разработка этого изделия должна была осуществляться предприятиями «Роскосмоса» и «Росатома». Ведущую роль в проекте играют ракетно-космическая корпорация «Энергия» и ФГУП «Центр Келдыша».
В 2010 г. проект стартовал, начались первые исследовательские и конструкторские работы. На тот момент утверждалось, что основные компоненты ЯЭДУ и ТЭМ будут готовы к концу десятилетия. Эскизный проект ТЭМ подготовили в 2013 г. В 2014-м начались испытания компонентов ЯЭДУ и ионного двигателя ИД-500. В дальнейшем неоднократно появлялись сообщения о тех или иных работах и успехах. Строились и испытывались различные элементы ЯЭДУ и ТЭМ, а также осуществлялся поиск сфер применения новой техники.
По мере проработки проекта ТЭМ в открытых источниках регулярно публиковались изображения, показывающие примерный облик этого изделия. Последний раз подобные материалы появлялись в ноябре прошлого года. Любопытно, что этот вариант облика заметно отличался от предыдущих, хотя и имел некоторое сходство в основных чертах.
Технические особенности
Транспортно-энергетический модуль рассматривается в качестве многоцелевого средства для работы в космосе, как на орбитах Земли, так и на других траекториях. С его помощью в будущем планируется выводить полезную нагрузку на орбиты или отправлять к другим небесным телам. Также ТЭМ может использоваться для обслуживания космических аппаратов или в борьбе с космическим мусором.
ТЭМ получит раздвижные несущие фермы, за счет которых будут обеспечены необходимые габариты. На фермах предлагается монтировать энергоблок с реакторной установкой, приборно-агрегатный комплекс, стыковочные средства, солнечные батареи и т.д. В хвостовой части модуля будут располагаться маршевые и маневровые электроракетные двигатели. Полезная нагрузка будет перевозиться при помощи стыковочных устройств.
Основной компонент ТЭМ – ЯЭДУ мегаваттного класса, разрабатываемая с 2009 г. Реактор установки должен отличаться особой стойкостью к температурным нагрузкам, что связано с особыми режимами его работы. В качестве теплоносителя выбрана гелий-ксеноновая смесь. Тепловая мощность установки достигнет 3,8 МВт, электрическая – 1 МВт. Для сброса лишнего тепла предлагается использовать капельный холодильник-излучатель.
Электроэнергия от ядерной установки должна подаваться на электроракетный двигатель. На стадии испытаний находится перспективный ионный двигатель ИД-500. При КПД до 75% он должен показывать мощность 35 кВт и тягу до 750 мН. На испытаниях в 2017 г. изделие ИД-500 отработало на стенде 300 ч на мощности 35 кВт.
Согласно данным прошлых лет, ТЭМ в рабочем положении будет иметь длину более 50-52 м при диаметре (по раскрытым фермам и элементам на них) свыше 20 м. Масса – не менее 20 т. Вывод такого модуля на околоземную орбиту будет осуществляться при помощи одной или нескольких ракет-носителей с последующей сборкой. Затем с ним должна стыковаться полезная нагрузка. Расчетный срок службы, ограниченный ресурсом реактора, составляет 10 лет.
Большие перспективы
Главной особенностью ТЭМ с ЯЭДУ, принципиально отличающей его от другой ракетно-космической техники, является высочайший удельный импульс. Применение особой энергоустановки и электроракетного двигателя позволяет получать требуемые параметры тяги при минимальном расходе ядерного топлива. Таким образом, ТЭМ в теории способен решать задачи, недоступные для традиционных ракетных систем на химическом топливе.
Благодаря этому появляется возможность более активного использования маршевых и маневровых двигателей на всем протяжении полета. В частности, это позволяет использовать более выгодные траектории полета к другим небесным телам. 10-летний срок эксплуатации позволяет многократно применять ТЭМ в разных миссиях, сокращая расходы на их организацию. В целом появление систем наподобие ТЭМ с ЯЭДУ даст космонавтике новые возможности во всех основных сферах деятельности.
Штатные двигатели ТЭМ должны использовать только часть электроэнергии от генерирующих систем. Соответственно, остается крупный запас мощности, пригодной для использования целевым оборудованием.
Однако имеются и существенные недостатки. Прежде всего, это необходимость разработки целого ряда новых технологий и общая сложность проекта. Вследствие этого создание ТЭМ требует много времени и соответствующее финансирование. Так, проект «Роскосмоса» разрабатывается около 10 лет, но практическое применение готового ТЭМ все еще относится к отдаленному будущему. Общая стоимость проекта оценивается в 17 млрд рублей.
Применение ядерной энергоустановки приводит к серьезным ограничениям на разных этапах. К примеру, испытания готовой ЯЭДУ или ТЭМ в целом возможны только на орбитах, что позволит минимизировать ущерб от возможных нештатных ситуаций. То же касается и эксплуатации готового транспортно-энергетического модуля.
Обозримое будущее
Согласно последним новостям, разработка проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса» успешно завершена. Уже готовы некоторые макетные образцы, необходимые для проведения испытаний. В ближайшие годы предприятиям из состава «Роскосмоса» и «Росатома» предстоит провести ряд важнейших работ с этими и другими изделиями.
Летный прототип ТЭМ планируется построить в 2022-23 гг. После этого должны стартовать различные испытания, на которые уйдет несколько лет. Полноценный запуск эксплуатации ТЭМ ожидается в 2030 г.
В конце июня стало известно о подготовке площадки для эксплуатации ТЭМ. Такую технику будут запускать с космодрома Восточный. Не так давно был объявлен конкурс на разработку и строительство комплекса средств для подготовки космических аппаратов и транспортно-энергетического модуля. Конструкторская документация на технический комплекс должна быть разработана в 2025-26 гг. Строительство планируется запустить в 2027-м, а ввод в эксплуатацию состоится в 2030-м. Стоимость контракта – 13,2 млрд рублей.
Таким образом, различные работы по теме перспективной ракетно-космической техники с ЯЭДУ будут продолжаться в течение всего следующего десятилетия. Одним организациям предстоит завершить разработку и провести испытания транспортно-энергетического модуля, тогда как другие будут готовить инфраструктуру для его эксплуатации. По результатам всех этих работ в 2030 г. в распоряжении российской космической отрасли окажется принципиально новая техника с широкими возможностями. Впрочем, сложность всех этапов многообещающей программы может привести к изменению графика.
Источник
Ядерные энергетические установки в космосе. Продолжение затронутой темы.
Проблема оснащения космических аппаратов надежными системами энергообеспечения стала очевидна почти сразу после запусков первых искусственных спутников Земли. Химические аккумуляторные батареи, применявшиеся в те годы, не могли удовлетворить стремительно растущие потребности в энергообеспечении для решения серьезных энергоемких задач в космосе.
Проведенные исследования показали, что для решения этой проблемы возможны несколько вариантов энергообеспечения. (Данный материал затрагивает тему, затронутую в другой интересной публикации сайта http://monomah.org/archives/9899 — ред.)
Один из них предусматривал применение солнечных батарей для питания бортовой аппаратуры полезной нагрузки и служебных систем космического аппарата (КА). Этот вариант было достаточно просто реализовать в техническом плане, он был относительно дешев и надежен при эксплуатации. Однако в те годы элементы солнечных батарей в процессе эксплуатации достаточно быстро деградировали, плюс ко всему они не могли обеспечить энергией спутник, когда он находился на теневом участке орбиты – в этом случае энергия поступала от аккумуляторов, имеющих значительную массу и небольшой срок службы. Тем не менее, сейчас, в связи с появлением новых материалов и технологий для производства солнечных батарей, этот способ обеспечения энергией космических аппаратов является основным в мировой космонавтике.
Космические аппараты с радиоизотопными источниками энергии
Другой вариант предусматривал использование ядерных источников энергии. Но их применение на космических аппаратах сопряжено с решением большого комплекса проблем обеспечения радиационной безопасности – как биосферы Земли на участке выведения спутника, так и полезной нагрузки КА в космическом пространстве. Первый опыт решения этих задач в нашей стране был получен при запуске в космос космических аппаратов с радиоизотопными источниками энергии. В 1965 г. были запущены два экспериментальных КА связи типа «Стрела-1» с радиоизотопными термоэлектрическими генераторами (РИТЭГ) «Орион-1», работающими на полонии-210. Вес генераторов составлял 14,8 кг, электрическая мощность – 20 Вт, срок работы – 4 месяца. В последующие годы проводились работы, направленные на повышение мощности и ресурса РИТЭГ для луноходов и автоматических межпланетных станций. В то же время разработанные конструкции РИТЭГ отличались между собой применяемыми изотопами, термоэлектрическими материалами, конструктивными формами и т.п. Все это значительно усложняло и удорожало создание подобных энергетических установок.
Сравнительно низкая энергоемкость, высокая стоимость РИТЭГ, сложности с решением проблем их использования в космосе, успехи в разработке энергетических установок на основе ядерного реактора явились причиной прекращения работ по новым РИТЭГ для космоса.
Рис. 1. Макет ЯЭУ «Тополь»
Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетании с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии (ядерный реактор) и преобразователь тепловой энергии в электрическую объединены в единый агрегат – реактор-преобразователь.
Первый советский термоэлектрический реактор-преобразователь «Ромашка» был впервые запущен в Институте атомной энергии («Курчатовский институт») 14 августа 1964 г. Реактор на быстрых нейтронах имел тепловую мощность 40 кВт и использовал в качестве топлива карбид урана. Термоэлектрический преобразователь на кремний-германиевых полупроводниковых элементах выдавал мощность до 800 Вт. Основоположник практической космонавтики, академик С.П.Королев намеревался использовать «Ромашку» на космических аппаратах в сочетании с импульсными плазменными двигателями, но его уход из жизни в 1966 г. не дал осуществиться этим планам. Испытания «Ромашки» закончились в середине 1966 года, но реактор так и не был использован в космосе.
Американские космические аппараты с ЯЭУ
Первой в мировой практике ядерной энергетической установкой (ЯЭУ), примененной на космическом аппарате, стала американская ЯЭУ SNAP-10A, размещенная на космическом аппарате Snapshot, который был выведен на орбиту 3 апреля 1965 года. Предполагалось провести летные испытания реактора в течение 90 суток. Реактор на тепловых нейтронах использовал уран-235 в качестве топлива, гидрид циркония как замедлитель и натрий-калиевый расплав в качестве теплоносителя. Тепловая мощность реактора составляла около 40 кВт. Электрическая мощность, обеспечиваемая термоэлектрическим преобразователем, составляла от 500 до 650 Вт. Реактор успешно проработал 43 дня – до 16 мая 1965 года.
Тем не менее, США вскоре свернули свою программу по космическим ЯЭУ. Так, 18 мая 1968 г. был запущен последний, на сегодняшний день, американский спутник с ядерным реактором. Увы, на участке выведения потерпела катастрофу ракета-носитель «Тор-Аджена-Д», которая должна была вывести на орбиту метеорологический спутник «Нимбус-В» с ЯЭУ SNAP-19B2. Благодаря прочности конструкции аппарата он не разрушился. Позднее он был найден и поднят на борт корабля американских ВМС. К счастью, радиоактивного заражения мирового океана не произошло. После этого США запустили ряд космических аппаратов с радиоизотопными генераторами, включая межпланетные автоматические станции «Пионер» и «Вояджер», а также пилотируемые космические корабли «Аполлон». Последним американским космическим аппаратом с радиоизотопным генератором стал межпланетный зонд «New Horizons», запущенный к Сатурну в январе 2006 г.
Советские космические аппараты с ЯЭУ
Первый советский спутник с ядерной энергетической установкой был запущен 3 октября 1970 г. Это был прототип космического аппарата радиолокационной разведки «УС-А» («Космос-367»), разработанный и изготовленный ЦКБ машиностроения (г.Реутов, генеральный конструктор В.Н.Челомей). Следует отметить, что к началу 1970-х годов ЦКБ машиностроения было загружено выполнением правительственных заданий по созданию новых противокорабельных крылатых ракет, космической орбитальной станции «Алмаз» и другими важными работами. Поэтому еще с мая 1969 г. весь комплекс работ по космическим аппаратам «УС-А», включая выпуск конструкторской и эксплуатационной документации, освоение серийного производства, проведение наземной и летно-конструкторской отработки космических комплексов, сдачу их в эксплуатацию, проводился ленинградскими Конструкторским бюро и заводом «Арсенал» имени М.В.Фрунзе.
Космический аппарат «УС-А» был оснащен радиолокатором одностороннего бокового обзора и был предназначен для обнаружения надводных кораблей и авианосных соединений противника. В качестве энергетической установки КА была использована ЯЭУ БЭС-5 «Бук» мощностью 3 кВт с термоэлектрическим преобразованием тепловой энергии (разработчик ЯЭУ – НПО «Красная Звезда»). Для обеспечения радиационной безопасности после завершения срока активного существования в составе КА была предусмотрена специальная твердотопливная двигательная установка, обеспечивающая увод энергетической части космического аппарата на орбиту с длительным сроком существования – продолжительностью не менее 10 периодов полураспада наиболее «живучих» изотопов ЯЭУ.
Рис. 2. КА УС-АМ
За время серийного производства спутников типа «УС-А» удалось увеличить срок активного существования изделий с 45 до 120 суток, при этом были решены задачи по защите бортовой аппаратуры КА от радиационного воздействия ЯЭУ.
В эти же годы коллективом КБ «Арсенал» проводились работы по модернизации КА «УС-А», направленные на кардинальное улучшение тактико-технических характеристик и увеличение срока активного существования. Результатом этого стало создание во второй половине 1980-х гг. космического аппарата двухстороннего радиолокационного обзора – «УС-АМ». Срок активного существования КА «УС-АМ» составил около 300 суток, применение локатора двухстороннего обзора позволило существенно расширить возможности КА с точки зрения целевого применения.
ЯЭУ с термоэмиссионными преобразователями
В то же время в Советском Союзе параллельно с работами по созданию ЯЭУ с термоэлектрическими генераторами проектировались ЯЭУ с термоэмиссионными преобразователями. Термоэмиссионное преобразование по сравнению с термоэлектрическим позволяет увеличить КПД, повысить ресурс и улучшить массогабаритные характеристики энергоустановки и космического аппарата в целом. В 1970–1973 гг. были созданы и прошли наземные энергетические испытания первые три прототипа термоэмиссионной ЯЭУ. Эти испытания непосредственно подтвердили возможность стабильного получения удовлетворительных выходных параметров реактора-преобразователя. Работы шли по ЯЭУ двух типов: ТЭУ-5 «Тополь» (Топаз-1) и «Енисей» (Топаз-2). Летные испытания двух образцов ЯЭУ «Тополь» были проведены в 1987–1988 гг. на КА «Плазма-А» разработки КБ «Арсенал» («Космос-1818» и «Космос-1867»). ЯЭУ на КА «Космос-1818» проработала в течение 142 суток, а ЯЭУ на «Космос-1867» – в течение 342 суток. В обоих случаях окончание работы ЯЭУ было связано с плановым исчерпанием запасов цезия, используемого при работе термоэмиссионного реактора-преобразователя.
Рис. 3
Отличительной чертой установки «Тополь» стало соединение реактора с термоэмиссионным (термоионным) преобразователем тепловой энергии в электрическую. Такой преобразователь подобен электронной лампе: катод из молибдена с вольфрамовым покрытием, нагретый до высокой температуры, испускает электроны, которые преодолевают промежуток, заполненный ионами цезия под низким давлением, и попадают на анод. Электрическая цепь замыкается через нагрузку.
Реактор (топливо – диоксид урана с 90% обогащением, теплоноситель – калий-натриевая смесь) имел тепловую мощность 150 кВт, причем количество урана-235 в реакторе было снижено до 11,5 кг по сравнению с 30 кг в БЭС-5 «Бук». Выходная электрическая мощность преобразователя составляла от 5 до 6,6 кВт.
В свою очередь, реактор-преобразователь «Енисей» разрабатывался ленинградским ЦКБ машиностроения по заказу НПО прикладной механики (г.Железногорск) для геостационарного КА непосредственного телевещания «Эстафета». Тепловая мощность «Енисея» была порядка 115–135 кВт, электрическая мощность 4,5–5,5 кВт. Расчетный срок службы был не менее 3 лет.
Международное сотрудничество по космическим ЯЭУ
Согласно ряду сообщений в прессе, в 1992 году США приобрели в России за 13 млн. долларов две ЯЭУ «Енисей». Один из реакторов, поставленных в США, предполагалось после тщательных наземных испытаний использовать в 1995 г. в «Космическом эксперименте с ядерно-электрической двигательной установкой». Однако в 1996 г. этот довольно дорогостоящий проект был закрыт.
Другие проекты космических реакторов 1990-х годов также не дошли до летных испытаний. Так, в 1993 г. были закрыты два американских проекта для Стратегической оборонной инициативы: ЯЭУ SP-100 с максимальной выходной электрической мощностью от 40 до 300 кВт и сроком службы от 3 до 7 лет и особо мощная установка на 5 МВт электрической мощности. В России проводилась разработка мощной двухрежимной установки «Топаз-100/40» («Топаз-3») для геостационарного космического аппарата. В режиме 100 кВт установка должна была обеспечить перевод КА с помощью электроракетных двигателей с начальной радиационно-безопасной орбиты (800 км) на геостационарную, а в режиме 40 кВт – для питания целевой аппаратуры в течение 7 лет.
Немалую роль в прекращении эксплуатации космических аппаратов с ЯЭУ сыграло настороженное после чернобыльской катастрофы отношение мировой общественности к ядерной энергетике вообще. К концу 1980-х годов обывателю, по крайней мере, на Западе, уже было известно об авариях космических аппаратов с ядерными энергоустановками – как советскими, так и американскими.
Радиационные аварии космических ЯЭУ
Наиболее серьезные аварии (с радиационным загрязнением) со спутниками, оснащенными ЯЭУ, происходили, по сути, трижды. Первая случилась 21 апреля 1964 г., когда аварией закончился запуск американского навигационного спутника «Транзит-5В» с ядерной энергетической установкой SNAP-9A на борту, а находившиеся в ней 950 граммов плутония-238 рассеялись в земной атмосфере, вызвав существенное повышение естественного радиоактивного фона. Вторая произошла 24 января 1978 г. уже с советским КА радиолокационной разведки «УС-А» («Космос-954»). В результате неконтролируемого схода спутника с орбиты при прохождении плотных слоев земной атмосферы произошло разрушение космического аппарата, а его обломки упали в северо-западных районах Канады. Произошло незначительное радиоактивное загрязнение поверхности, правительство СССР выплатило Канаде компенсацию, но ущерб в этом случае был в большей степени политическим – СССР обвинили в милитаризации космоса, а КА «УС-А» пришлось дооснащать дублирующей системой обеспечения радиационной безопасности, и пуски таких аппаратов возобновились только в 1980 году. В феврале 1983 г. в пустынных районах Южной Атлантики снова упал КА «УС-А» («Космос-1402»). Однако в этот раз конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Тем не менее, было зафиксировано незначительное повышение естественного радиационного фона.
Последний инцидент со спутником «УС-А» («Космос-1900») случился в 1988 г., когда, как казалось, было не избежать повторения канадского скандала, но за несколько дней до входа космического аппарата в плотные слои атмосферы сработала аварийная защитная система и активная зона реактора была успешно отделена и переведена на орбиту захоронения.
За месяц до этого был запущен модернизированный КА «УС-АМ» («Космос-1932»). И хотя в этот раз полет прошел нормально, от эксплуатации аппаратов с ядерными энергетическими установками было решено отказаться «до лучших времен». Тем более, что в это время на СССР оказывалось серьезное давление со стороны США и международных организаций, требовавших от Советского Союза «прекратить загрязнение космоса».
Рис. 4. JIMO (журнал «Новости космонавтики»)
Экологическая безопасность космических ЯЭУ
В нашей стране с самого начала работ по космическим аппаратам с ЯЭУ огромное значение придавалось обеспечению экологической безопасности на всех этапах эксплуатации таких КА. С учетом специфики работы реактора, накопления в нем радиоактивности и ее последующего спада, были приняты следующие принципы обеспечения безопасности:
• сохранение реактора ЯЭУ в подкритичном состоянии (т.е. без протекания реакции деления) до выхода КА на орбиту, в том числе во всех аварийных ситуациях;
• включение реактора ЯЭУ только на рабочей орбите КА;
• обязательное выключение реактора после выполнения спутником заданной программы, а также при возникновении аварийной ситуации;
• изоляция ЯЭУ от населения Земли в течение времени, необходимого для снижения радиоактивности выключенного реактора до безопасного уровня;
• при невозможности изоляции – диспергирование (дробление) ЯЭУ до уровней, обеспечивающих безопасность населения на территории выпадения фрагментов установки.
Эти принципы были в дальнейшем одобрены Комитетом ООН по космосу и закреплены в ныне действующем документе «Принципы, касающиеся использования ядерных источников энергии в космическом пространстве», принятом Генеральной Ассамблеей ООН в 1992 году.
Перспективы развития космических ЯЭУ
Как видно из истории, использование ядерной энергии в космосе остается опасным и дорогостоящим делом, но игра всё же стоит свеч. В настоящее время в России ведется отработка и создание космических ядерных энергетических установок следующего поколения. Ранее созданные установки «Бук» и «Тополь» имели уровень мощности 3-10 кВт и ресурс работы от 3 месяцев до одного года. Имеется практический задел по созданию установок мощностью до 100 кВт и с ресурсом работы от 5 до 10 лет.
Применение ядерных энергоустановок в космосе в соответствии с принятой идеологией предусматривает их использование только в тех сферах, где нет возможности решить задачу с помощью других источников энергии. Главным источником энергии на околоземных орбитах являются солнечные элементы, мощность и КПД которых за последнее время значительно выросли. Если еще несколько лет назад разработчики ЯЭУ ориентировались на уровень мощности 20 кВт, то сегодня такой уровень планируется обеспечивать солнечными источниками энергии. В то же время для полетов в дальний космос использование ЯЭУ практически не имеет альтернативы. Для таких масштабных проектов, как экспедиция на Марс, преимущество использования ядерной энергетики не вызывает сомнений. Причем ЯЭУ может служить не только источником энергии для жизнеобеспечения экипажа и питания аппаратуры, но и средством, обеспечивающим движение, в том числе с помощью ядерного ракетного двигателя. В соответствии с современными представлениями это может быть транспортно-энергетический модуль, обеспечивающий вывод аппарата на орбиту или возможность смены орбиты. Такая двухрежимная установка с уровнем мощности около 100 кВт обеспечит вывод космического корабля на рабочую орбиту, и уже там обеспечит энергопитание на более низком уровне мощности.
Американские программы по атомным технологиям для космоса
В США после долгого перерыва решили вернуться к использованию космических ЯЭУ. В августе 2006 года президентом Бушем и конгрессом был принят очень важный документ – «Национальная космическая политика США». В нем недвусмысленно говорится о необходимости достижения государственного приоритета в области космических технологий, в том числе атомных. В США уже ведутся предварительные исследования по созданию первой в мире межпланетной станции, использующей ядерный реактор как источник питания бортовой электрореактивной двигательной установки и научной аппаратуры с высоким уровнем энергопотребления. Станция предназначена для исследования трех из четырех галилеевых спутников Юпитера – Европы, Ганимеда и Каллисто – и потому названа JIMO (Jupiter Icy Moon Orbiter, Орбитальный аппарат для ледяных лун Юпитера). Она должна окончательно установить, существуют ли под ледяной корой этих больших спутников океаны, в которых может быть жизнь.
Проект JIMO должен продемонстрировать безопасность ядерных реакторов и надежность эксплуатации ядерных реакторов в космосе. Ядерная энергетическая установка этого аппарата должна дать в 100 раз больше электроэнергии, чем энергетические установки, применявшиеся для межпланетных перелетов ранее. Все это откроет новые возможности для исследований, включая более гибкий план полетов, в меньшей степени зависящий от взаимного расположения планет, а значит, дающий большее время для целевых работ в одной миссии.
Концепция развития космической ядерной энергетики в России
В 1998 г. Правительство Российской Федерации приняло постановление «О концепции развития космической ядерной энергетики в России». Эта Концепция направлена на сохранение лидирующих позиций России в области космических ядерных технологий, высококвалифицированных кадров, уникальной экспериментальной и производственно-технологической баз, инфраструктуры научных центров и предприятий, которые осуществляют работы в данной области.
Таким образом, сейчас наблюдается настоящий ренессанс космической ядерной энергетики – для решения амбициозных энергоемких задач на околоземной орбите и в дальнем космосе требуется колоссальная энергия, дать которую в настоящее время способны только ядерные энергетические установки. При должном финансировании и внимании мирового ученого сообщества к этой технологии человечество уже в ближайшей перспективе будет способно подойти к промышленному освоению космоса, пилотируемому полету на Марс и исследованию дальних планет.
ФГУП «Конструкторское бюро «Арсенал» имени М.В.Фрунзе»,
Источник