Все за сегодня
Политика
Экономика
Наука
Война и ВПК
Общество
ИноБлоги
Подкасты
Мультимедиа
Наука
Big Think (США): что было до Большого взрыва?
Спрашивать науку, что было до начала времени, подобно вопросу «Кем вы были до рождения»
— Наука позволяет нам определить, что произошло за одну триллионную долю секунды после Большого взрыва.
— Но мы вряд ли когда-нибудь узнаем, что вызвало Большой взрыв.
— Это вызывает разочарование, но некоторые вещи совершенно непознаваемы. И это хорошо.
Давайте скажем честно: довольно странно думать о том, будто история Вселенной началась со своеобразного дня рождения 13,8 миллиарда лет тому назад. Это соответствует многим религиозным постулатам, согласно которым космос был создан благодаря вмешательству свыше, хотя наука ничего об этом не говорит.
Что случилось до начала времени?
Если все произошедшее имеет причинно-следственную связь, то что вызвало возникновение Вселенной? Чтобы ответить на очень сложный вопрос о Первопричине, в религиозных мифах о сотворении мира используют то, что антропологи культуры порой называют «позитивным бытием» или сверхъестественным явлением. Поскольку у времени в какой-то момент в далеком прошлом было начало, Первопричина должна быть особенной. Это должна быть беспричинная причина, явление, которое просто произошло, и ему ничто не предшествовало.
Но если приписывать начало всего Большому взрыву, напрашивается вопрос: а что было до этого? Когда мы имеем дело с бессмертными богами, это совсем другое дело, так как для них неподвластность времени не вопрос. Боги существуют вне времени, а мы нет. Для нас нет такого понятия как «до времени». Следовательно, если задать вопрос, что происходило до Большого взрыва, он будет в определенной степени бессмысленным, даже если нам необходимо найти смысл. Стивен Хокинг как-то раз приравнял его к вопросу «Что находится севернее Северного полюса?» А мне нравится фраза «Кем вы были до рождения?»
Аврелий Августин выдвинул гипотезу о том, что время и пространство появились вместе с сотворением мира. Для него это был, конечно же, божий промысел. А для науки?
Мультимедиа
10 худших мест для жизни во вселенной
13 фото, напоминающих о том, насколько поразительна наша Вселенная
В науке мы, чтобы понять, как Вселенная зарождалась, развивалась и взрослела, возвращаемся назад во времени, пытаясь реконструировать происходившее. Подобно палеонтологам, мы идентифицируем «окаменелости», то есть остатки вещества из давно минувших дней, а потом с их помощью узнаем о существовавших в те времена различных физических явлениях.
Мы с уверенностью исходим из того, что Вселенная расширяется на протяжении миллиардов лет, и что этот процесс продолжается сейчас. В данном случае «расширение» означает, что расстояния между галактиками увеличиваются; галактики отдаляются друг от друга со скоростью, зависящей от того, что было внутри Вселенной в разные эпохи, то есть, какая материя заполняла пространство.
Большой взрыв не был взрывом
Когда мы говорим о Большом взрыве и расширении, мы представляем себе взрыв, положивший начало всему. Поэтому мы его так и назвали. Но это неверное представление. Галактики удаляются друг от друга, потому что их буквально разводит растяжение самого пространства. Подобно эластичной ткани, пространство растягивается и несет с собой галактики, как течение реки уносит с собой бревна. Так что галактики нельзя назвать осколками, разлетающимися от взрыва. Не было никакого центрального взрыва. Вселенная расширяется во всех направлениях, и она вполне демократична. Каждая точка важна в одинаковой степени. Кто-то в далекой галактике видит удаление других галактик так же, как и мы.
(Примечание: У близких к нам галактик есть отклонения от этого космического потока, которые называются «локальным движением». Это вызвано гравитацией. Например, Туманность Андромеды приближается к нам.)
Возвращение в прошлое
Если крутить космическое кино назад, мы увидим, как материя все больше и больше сдавливается в сокращающемся пространстве. Температура растет, давление увеличивается, и начинается распад. Молекулы распадаются на атомы, атомы на ядра и электроны, атомные ядра на протоны и нейтроны, а затем протоны и нейтроны на кварки. Такое последовательное разложение материи на самые базовые и элементарные составные части происходит по мере того, как часы тикают в обратном направлении в сторону взрыва.
Например, атомы водорода распадаются примерно за 400 000 лет до Большого взрыва, ядра атомов примерно за одну минуту, а протоны с нейтронами за сотую долю секунды (при просмотре в обратном направлении, конечно). Откуда это нам известно? Мы нашли остатки радиации из того времени, когда сформировались первые атомы (реликтовое микроволновое фоновое излучение), и выяснили, как возникли первые ядра легких атомов, когда Вселенной было всего несколько минут от роду. Это как раз те космические окаменелости, которые показывают нам путь в обратном направлении.
В настоящее время мы в ходе экспериментов можем смоделировать условия, существовавшие в тот момент, когда возраст Вселенной составлял одну триллионную долю секунды. Нам это может показаться ничтожно малой величиной, однако для световой частицы фотона это продолжительное время, позволяющее ему пролететь расстояние, в триллион раз превышающее диаметр протона. Когда мы говорим о ранней Вселенной, нам следует забыть про человеческие мерки и представления о времени.
Безусловно, мы хотим как можно ближе подобраться к моменту, когда время было равно 0. Но в какой-то момент мы утыкаемся в стену незнания и можем лишь экстраполировать свои нынешние теории в надежде на то, что они дадут нам хоть какие-то намеки на происходившее в начале времени, при таких энергиях и температурах, которые мы не можем создать в лаборатории. Но одно мы знаем наверняка. Когда время близко к 0, наша нынешняя теория о свойствах пространства и времени, какой является общая теория относительности Эйнштейна, не действует.
Это сфера квантовой механики, в которой расстояния настолько малы, что мы должны представлять себе пространство не как непрерывный лист, а как зернистую структуру. К сожалению, у нас нет качественной теории, описывающей такую зернистость пространства, как нет и физических законов гравитации в квантовом масштабе (известной как квантовая гравитация). Кандидаты, конечно, есть, например, теория суперструн и петлевая квантовая гравитация. Но в настоящее время отсутствуют доказательства того, что они верно описывают физические явления.
Квантовая космология не дает ответ на вопрос
Тем не менее, любознательность человека требует приблизить границы к нулевому значению времени. Что можно сказать? В 1980-х годах Александр Виленкин, Андрей Линде и Джеймс Хартл со Стивеном Хокингом предложили три модели квантовой космологии, в которых Вселенная существует как атом, а уравнение похоже на то, что используется в квантовой механике. В этом уравнении вселенная есть волна вероятности, которая по сути дела связывает вневременную квантовую область с классической, где есть время, то есть, со вселенной, в которой мы обитаем, и которая сейчас расширяется. Переход от кванта к классике буквально означает возникновение космоса, то, что мы называем Большим взрывом. Таким образом, Большой взрыв является беспричинной квантовой флуктуацией, такой же случайной, как радиоактивный распад: от отсутствия времени к его присутствию.
Контекст
BBC: загадка взрывающихся сибирских кратеров
Forskning: пять мифов о Большом взрыве
Iltalehti: новое объяснение загадки Тунгусского метеорита
Если исходить из того, что одна из этих простых моделей верна, будет ли она научным объяснением Первопричины? Можем ли мы вообще избавиться от необходимости существования причины, пользуясь вероятностями квантовой физики?
К сожалению, нет. Конечно, такая модель стала бы поразительным интеллектуальным подвигом. Это был бы колоссальный шаг вперед в понимании происхождения всего. Но этого недостаточно. Наука не может существовать в вакууме. Ей нужен понятийный аппарат, такие понятия как пространство, время, материя, энергия. Ей нужны расчеты, нужны законы сохранения таких величин как энергия и количество движения. Из идей небоскреб не построишь, как не создашь модель без понятий и законов. Требовать от науки «объяснений» Первопричины — все равно что просить ее объяснить собственную структуру. Это просьба представить научную модель, в которой не используются прецеденты, нет более ранних концепций, которыми можно оперировать. Наука не может этого сделать, как человек не может думать без мозга.
Загадка Первопричины остается неразгаданной. В качестве ответа можно выбрать религию и веру, а еще можно считать, что наука со временем все разгадает. Мы также можем, подобно древнегреческому скептику Пиррону, смиренно признать, что существуют пределы нашего познания. Мы можем радоваться достигнутому и продолжать постигать, осознавая при этом, что нет необходимости знать все и понимать все. Достаточно того, что мы продолжаем пытливо интересоваться.
Любознательность без загадки слепа, а загадка без любознательности ущербна.
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.
Источник
За триллион лет до Большого взрыва
У теории Большого взрыва есть сильный конкурент – циклическая теория.
Название этой статьи может показаться не слишком умной шуткой. Согласно общепринятой космологической концепции, теории Большого взрыва, наша Вселенная возникла из экстремального состояния физического вакуума, порожденного квантовой флуктуацией. В этом состоянии не существовало ни времени, ни пространства (или они были спутаны в пространственно-временную пену), а все фундаментальные физические взаимодействия были слиты воедино. Позже они разделились и обрели самостоятельное бытие — сначала гравитация, затем сильное взаимодействие, а уже потом — слабое и электромагнитное.
Момент, предшествовавший этим переменам, принято обозначать как нулевое время, t=0, однако это чистая условность, дань математическому формализму. Согласно стандартной теории, непрерывное течение времени началось лишь после того, как сила тяготения обрела независимость. Этому моменту обычно приписывают величину t=10-43 с (точнее, 5,4х10-44 с), которую называют планковским временем. Современные физические теории просто не в состоянии осмысленно работать с более короткими промежутками времени (считается, что для этого нужна квантовая теория гравитации, которая пока не создана). В контексте традиционной космологии нет смысла рассуждать о том, что происходило до начального момента времени, поскольку времени в нашем понимании тогда просто не существовало.
- Теория Большого взрыва пользуется доверием абсолютного большинства ученых, изучающих раннюю историю нашей Вселенной. Она и в самом деле объясняет очень многое и ни в чем не противоречит экспериментальным данным. Однако недавно у нее появился конкурент в лице новой, циклической теории, основы которой разработали двое физиков экстра-класса – директор Института теоретической науки Принстонского университета Пол Стейнхардт и лауреат Максвелловской медали и престижной международной премии TED Нил Тьюрок, директор канадского Института перспективных исследований в области теоретической физики (Perimeter Institute for Theoretical Physics). С помощью профессора Стейнхардта попытаемся рассказать о циклической теории и о причинах ее появления.
Инфляционная космология
Непременной частью стандартной космологической теории служит концепция инфляции (см. врезку). После окончания инфляции в свои права вступило тяготение, и Вселенная продолжила расширяться, но уже с уменьшающейся скоростью. Такая эволюция растянулась на 9 млрд лет, после чего в дело вступило еще одно антигравитационное поле еще неизвестной природы, которое именуют темной энергией. Оно опять вывело Вселенную в режим экспоненциального расширения, который вроде бы должен сохраниться и в будущие времена. Следует отметить, что эти выводы базируются на астрофизических открытиях, сделанных в конце прошлого века, почти через 20 лет после появления инфляционной космологии.
Впервые инфляционная интерпретация Большого взрыва была предложена около 40 лет назад и с тех пор многократно шлифовалась. Эта теория позволила разрешить несколько фундаментальных проблем, с которыми не справилась предшествующая космология. Например, она объяснила, почему мы живем во Вселенной с плоской евклидовой геометрией — в соответствии с классическими уравнениями Фридмана, именно такой она и должна сделаться при экспоненциальном расширении. Инфляционная теория объяснила, почему космическая материя обладает зернистостью в масштабах, не превышающих сотен миллионов световых лет, а на больших дистанциях распределена равномерно. Она также дала истолкование неудачи любых попыток обнаружить магнитные монополи, очень массивные частицы с одиночным магнитным полюсом, которые, как считается, в изобилии рождались перед началом инфляции (инфляция так растянула космическое пространство, что первоначально высокая плотность монополей сократилась почти до нуля, и поэтому наши приборы не могут их обнаружить).
Вскоре после появления инфляционной модели несколько теоретиков поняли, что ее внутренняя логика не противоречит идее перманентного множественного рождения все новых и новых вселенных. В самом деле, квантовые флуктуации, подобные тем, которым мы обязаны существованием нашего мира, могут возникать в любом количестве, если для этого имеются подходящие условия. Не исключено, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода, также способную к космологическому «деторождению». Существуют модели, в которых такие дочерние вселенные возникают непрерывно, отпочковываются от своих родительниц и находят свое собственное место. При этом вовсе не обязательно, что в таких мирах устанавливаются одни и те же физические законы. Все эти миры «вложены» в единый пространственно-временной континуум, но разнесены в нем настолько, что никак не ощущают присутствия друг друга. В общем, концепция инфляции позволяет- более того, вынуждает!- считать, что в исполинском мегакосмосе существует множество изолированных друг от друга вселенных с различным устройством.
Альтернатива
Физики-теоретики любят придумывать альтернативы даже самым общепринятым теориям. Появились конкуренты и у инфляционной модели Большого взрыва. Они не получили широкой поддержки, но имели и имеют своих последователей. Теория Стейнхардта и Тьюрока среди них не первая и наверняка не последняя. Однако на сегодняшний день она разработана детальней остальных и лучше объясняет наблюдаемые свойства нашего мира. Она имеет несколько версий, из которых одни базируются на теории квантовых струн и многомерных пространств, а другие полагаются на традиционную квантовую теорию поля. Первый подход дает более наглядные картинки космологических процессов, так что на нем и остановимся.
Самый продвинутый вариант теории струн известен как М-теория. Она утверждает, что физический мир имеет 11 измерений — десять пространственных и одно временное. В нем плавают пространства меньших размерностей, так называемые браны. Наша Вселенная — просто одна из таких бран, обладающая тремя пространственными измерениями. Ее заполняют различные квантовые частицы (электроны, кварки, фотоны и т. д.), которые на самом деле явлются разомкнутыми вибрирующими струнами с единственным пространственным измерением — длиной. Концы каждой струны намертво закреплены внутри трехмерной браны, и покинуть брану струна не может. Но есть и замкнутые струны, которые могут мигрировать за пределы бран — это гравитоны, кванты поля тяготения.
Как же циклическая теория объясняет прошлое и будущее мироздания? Начнем с нынешней эпохи. Первое место сейчас принадлежит темной энергии, которая заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры. В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской. В течение следующего триллиона лет размеры Вселенной удвоятся около ста раз и она превратится в практически пустой мир, полностью лишенный материальных структур. Рядом с нами находится еще одна трехмерная брана, отделенная от нас на ничтожное расстояние в четвертом измерении, и она тоже претерпевает аналогичное экспоненциальное растяжение и уплощение. Все это время дистанция между бранами практически не меняется.
А потом эти параллельные браны начинают сближаться. Их толкает друг к другу силовое поле, энергия которого зависит от расстояния между бранами. Сейчас плотность энергии такого поля положительна, поэтому пространство обеих бран расширяется по экспоненте, — следовательно, именно это поле и обеспечивает эффект, который объясняют наличием темной энергии! Однако этот параметр постепенно уменьшается и через триллион лет упадет до нуля. Обе браны все равно продолжат расширяться, но уже не по экспоненте, а в очень медленном темпе. Следовательно, в нашем мире плотность частиц и излучения так и останется почти что нулевой, а геометрия — плоской.
Мир без начала и конца
Циклическая теория существует в нескольких версиях, как и теория инфляции. Однако, по словам Пола Стейнхардта, различия между ними чисто технические и интересны лишь специалистам, общая концепция же остается неизменной: «Во-первых, в нашей теории нет никакого момента начала мира, никакой сингулярности. Есть периодические фазы интенсивного рождения вещества и излучения, каждую из которых при желании можно называть Большим взрывом. Но любая из этих фаз знаменует не возникновение новой вселенной, а лишь переход от одного цикла к другому. И пространство, и время существуют и до, и после любого из этих катаклизмов. Поэтому вполне закономерно спросить, каким было положение дел за 10 млрд лет до последнего Большого взрыва, от которого отсчитывают историю мироздания.
Второе ключевое отличие — природа и роль темной энергии. Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений. А наш подход гораздо лучше скреплен внутренней логикой, поскольку темная энергия у нас присутствует изначально и именно она обеспечивает чередование космологических циклов». Впрочем, как отмечает Пол Стейнхардт, есть у циклической теории и слабые места: «Нам пока не удалось убедительно описать процесс столкновения и отскока параллельных бран, имеющий место в начале каждого цикла. Прочие аспекты циклической теории разработаны куда лучше, а здесь предстоит устранить еще немало неясностей».
Источник