Теория множественных вселенных. Где заканчивается наука и начинается вымысел?
Вселенная там, где была всегда и будет всегда. По крайней мере, так нам сказали и так следует из самого слова «Вселенная». Но какой бы ни были истинная природа Вселенной, наша способность собирать о ней информацию фундаментально ограничена. С момента Большого Взрыва прошло 13,8 миллиарда лет, и скорость, с которой путешествует информация — предельная скорость, скорость света — ограничена. Поэтому, хотя вся Вселенная может быть воистину безгранична, наблюдаемая Вселенная — нет.
Больше, чем объектов в космосе только количество рассеждений о них.
Согласно ведущим идеям теоретической физики, наша Вселенная может быть одним небольшим регионом огромных множественных вселенных, которых может быть бесконечно много. Некоторые из этих идей действительно научны, а некоторые — сугубо спекулятивные, выдающие желаемое за действительное. Давайте научимся их разделять. Но сперва немного предыстории.
Существуют ли множественные вселенные?
Современная Вселенная предлагает нам несколько интересных фактов, которые очень легко наблюдать и проверить, во всяком случае, при помощи научных объектов мирового класса. Мы знаем, что Вселенная расширяется: мы можем измерить свойства галактик, узнать их расстояние и скорость удаления от нас. Чем дальше они, тем быстрее удаляются. В контексте общей теории относительности, это означает, что Вселенная расширяется.
Подписывайтесь на наш канал в Яндекс Дзен. Там можно найти много всего интересного, чего нет даже на нашем сайте.
И если Вселенная расширяется сегодня, это означает, что в прошлом она была меньше и плотнее. Если углубиться достаточно далеко в прошлое, можно обнаружить, что она была также более однородной (потому что гравитации потребовалось время, чтобы собрать все по кучкам) и более горячей (потому что меньшие длины волн света означают более высокие энергии и температуры). Это возвращает нас к Большому Взрыву.
Зависимость космоса от времени.
Но Большой Взрыв не был самым началом Вселенной. Мы можем заглянуть в прошлое только до определенного момента во времени, за которым прогнозы Большого Взрыва перестают сбываться. Есть несколько наблюдений вещей во Вселенной, которых Большой Взрыв не объясняет, однако объясняет теория космической инфляции.
В 1980-х годах было разработано довольно много теоретических последствий инфляции, включая:
- как должен выглядеть посев крупномасштабных структур;
- что флуктуации температуры и плотности должны существовать в масштабах, превышающих космический горизонт;
- что все регионы космоса, даже с флуктуациями, должны обладать постоянной энтропией;
- должен быть максимум температуры, достигнутый Большим Взрывом.
В 1990-х, 2000-х и 2010-х эти четыре предсказания были наблюдательно подтверждены с высокой точностью. Космическая инфляция побеждает.
Инфляция говорит нам, что до Большого Взрыва Вселенная не была наполнена частицами, античастицами и излучением. Вместо этого она была наполнена энергией, присущей самому пространству и эта энергия приводила к тому, что пространство расширялось быстро, неумолимо и экспоненциально. В определенный момент инфляция закончилась и вся (или почти вся) эта энергия оказалась преобразованной в материю и энергию, положив начало горячему Большому Взрыву. Конец инфляции положил начало Большому Взрыву. То есть, Большой Взрыв был, но не в самом начале.
Если бы это была полная история, у нас в руках оказалась бы одна чрезвычайно большая Вселенная. Ее свойства были бы везде одинаковыми, законы одни и те же, а части, которые были за пределами видимого горизонта, были бы похожи на то место, где мы находимся, однако назвать их множественными вселенными было бы нельзя.
То есть, нельзя было бы до тех пор, пока вы не вспомните, что все существующее физически должно быть квантовым по природе. Даже инфляция со всеми неизвестными, ее окружающими, должна быть квантовым полем.
Если же вам нужно, чтобы инфляция обладала свойствами квантовых полей:
- в ее свойствах должны быть неопределенности, им присущие;
- поле должно описываться волновой функцией;
- значения поля растягиваются со временем;
тогда вы придете к необычному выводу.
Инфляция не закончилась всюду одновременно, а скорее в отдельных, выбранных, независимых местах, в то время как пространство между ними продолжало раздуваться. Должно быть несколько огромных областей пространства, где инфляция заканчивается и начинается Большой Взрыв, но они никогда не встретятся, потому что разделены регионами раздувающегося пространства. После начала инфляция будет продолжаться гарантированно и бесконечно, по крайней мере, в некоторых местах.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Когда инфляция заканчивается, мы получаем Большой Взрыв. Та часть Вселенной, которую мы наблюдаем, это лишь часть региона, в котором инфляция завершилась, за пределами которого много ненаблюдаемой Вселенной. И существует огромное количество регионов, разделенных между собой, с точно такой же историей.
Такова идея множественных вселенных. Как видите, она основывается на двух независимых, хорошо установленных и широко принятых аспектах теоретической физики: квантовая природа всего и свойства космической инфляции. Не существует никакого способа измерить ее, как нет и способа измерить ненаблюдаемую часть Вселенной. Но эти две теории, которые лежат в ее основе, инфляция и квантовая физика, продемонстрировали свою состоятельность. Если они верны, множественные вселенные будут неизбежным следствием этого, а мы будем в них жить.
И что? Существует множество теоретических последствий, которые неизбежны, но о которых мы не можем знать наверняка, потому что не можем их проверить. Множественные вселенные — одно из таких последствий. Не то чтобы это было полезно, это просто интересное предсказание, которое вытекает из теорий.
Почему же так много физиков-теоретиков пишут работы на тему множественных вселенных? На тему параллельных вселенных и их связей с нашей собственной? Почему они утверждают, что множественные вселенные привязаны к струнам, космологической постоянной и тому факту, что наша Вселенная идеально настроена для жизни?
Да потому что лучше идей у них нет.
В контексте теории струн существует огромный список параметров, которые могут, в принципе, принимать практически любое значение. Эта теория не делает никаких предсказаний для них, поэтому мы вынуждены прикидывать их значения в контексте струнных вакуумов. Если вы слышали о невероятно больших числах, вроде знаменитых 10 500 , которые появляются в теории струн, они отсылают к возможным значениям струнных вакуумов. Мы пока не знаем, что они такое или почему обладают такими значениями. Никто не знает, как их рассчитывать.
Поэтому, вместо того, чтобы говорить: «Это множественные вселенные!», люди думают следующим образом:
- Мы не знаем, почему фундаментальные постоянные обладают такими значениями, которыми обладают.
- Мы не знаем, почему законы физики являются такими, какими являются.
- Теория струн — это рамки, которые могли бы обеспечить наши законы физики нашими фундаментальными постоянными, а также дать нам другие законы или постоянные.
- Следовательно, если у нас будут огромные множественные вселенные, в которых разные регионы будут обладать разными законами и постоянными, один из таковых может быть нашим.
Проблема в том, что все это не только сугубо спекулятивно, но и нет причин, учитывая инфляцию и квантовую физику, полагать, что у раздувающегося пространства-времени разные законы или постоянные в разных регионах.
Не нравится такой подход к рассуждению? Да и никому не нравится.
Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.
Как мы уже выяснили, множественные вселенные — это не научная теория сама по себе. Скорее, это теоретическое следствие законов физики в наиболее полном их понимании. Даже если у вас будет инфляционная Вселенная, управляемая квантовой физикой, вы будете к этому привязаны. Но — как и теория струн — она с проблемами: она не предсказывает ничего из того, что мы наблюдали и не смогли объяснить без нее, и она не предсказывает ничего конкретного, на что мы могли бы пойти и взглянуть.
В этой физической Вселенной важно наблюдать все, что мы можем, и собирать по крупицам любое знание, к которому есть доступ. Только из полного набора данных, которые, как мы надеемся, будут верными, можно будет извлечь научные суждения о природе Вселенной. Некоторые из этих выводов будут иметь последствия, которые мы не сможем измерить и доказать: существование множественных вселенных, например. Но когда люди рассуждают о фундаментальных постоянных, о законах физики, о значениях струнных вакуумов, они не занимаются наукой, они просто рассуждают. Можно сколько угодно судачить о множественных вселенных и приводить в пример видные работы таких теоретиков, но делать из этого научный взгляд — нет.
Источник
Бесконечность Вселенной: как понять и осознать космос
Современная космология возникла в XX веке с развитием Общей Теории Относительности Альберта Эйнштейна. Именно эта наука изучает эволюцию Вселенной в целом. Многие парадоксы классической космологии вызывают интерес: фотометрический парадокс (почему ночью темно?), термодинамический парадокс (почему не наступило тепловое равновесие?), гравитационный парадокс (закон всемирного тяготения не объясняет гравитационное поле, создаваемое бесконечной системой масс).
Но один из главных вопросов, волнующий учёных, звучит так: бесконечна ли Вселенная? Бесконечна ли вселенная с точки зрения математики, физики, философии? Как представить бесконечность космоса? Ответы на эти вопросы помогут взглянуть на будущее человечества под другим углом.
Как доказать бесконечность Вселенной?
Космология Джордано Бруно
Джордано Бруно стал одним из первых, кто попытался ответить на вопрос: бесконечна ли Вселенная с точки зрения философии — и доказать это в своих трактатах: «Пир на пепле», «О бесконечном, Вселенной и мирах». Однако его аргументы пересекались с теологией и основывались на божественном начале:
- Первое доказательство: принцип полноты. Если бог, сотворивший Вселенную, всемогущ и бесконечен, то и Вселенная бесконечна.
- Второе доказательство: принцип отсутствия основания. Если бог сотворил мир в одной точке пространства, то сотворил его в и в другой.
- Третье доказательство: вне Вселенной ничего нет, поэтому ничто не может её ограничить.
Эти выводы Бруно приводил с точки зрения философии и теологии, поэтому они имеют не научное, а культурное и историческое значение. Современная же наука хочет ответить на вопрос: бесконечна ли Вселенная с точки зрения математики и философии.
Памятник Джордано Бруно в Италии
Современная космология. Расширяющаяся Вселенная
На данный момент учёные доказали, что правильная модель Вселенной — расширяющаяся Вселенная, а не стационарная, как считалось столетиями до XX века. Это открытие совершил Эдвин Хаббл на основании эффекта Доплера (красное смещение).
Чтобы наглядно представить эффект Доплера, прислушайтесь к проезжающему мимо вас автомобилю. Когда он приближается, звук его двигателя кажется громче, что соответствует более высокой частоте звуковых волн; когда удаляется, звук двигателя кажется более низким, что соответствует более низкой частоте звуковых волн. Аналогичное происходит со световыми волнами.
Величина красного смещения пропорциональна расстоянию — чем дальше галактика, тем быстрее она удаляется от нас. Все галактики имеют красное смещение. Это означает, что все они удаляются от нас. Следовательно, Вселенная расширяется.
Красное смещение: принцип действия
Однако долгое время считалось, что Вселенная стационарна. Главная теория, на которой строится современная космология, — Общая Теория Относительности, — предполагает, что Вселенная стационарна.
Теоретически доказать обратное смог Александр Фридман, что после экспериментально подтвердил своим открытием Эдвин Хаббл.
Модели Фридмана
На основе ОТО Альберта Эйнштейна Александр Фридман сделал два предположения:
- Вселенная выглядит одинаково при наблюдении в любом направлении;
- Это справедливо при наблюдении из любой точки пространства;
Благодаря этим предположениям были созданы модели Вселенной, которые можно разделить на два типа:
- Если средняя плотность вещества меньше или равна определённому критическому значению, то идея бесконечности Вселенной подтвердится. В этом случае её сегодняшнее расширение будет продолжаться вечно.
- Если средняя плотность больше критической, то создаваемое веществом гравитационное поле заставит Вселенную замкнуть саму себя. Она будет конечной, но неограниченной, как сферическая поверхность. Затем гравитационные поля остановят расширение Вселенной и заставят её перейти в состояние сингулярности.
Критическая плотность пропорциональна квадрату параметра Хаббла. Если взять значение 15 км/с на миллион световых лет, получится критическая плотность, равная 5×10^30 грамм на кубический сантиметр, или три атома водорода на тысячу литров космического пространства.
Современные модели Вселенной (космологические теории)
Ускорение расширяющейся Вселенной
Вселенная не просто расширяется — она расширяется с ускорением. Это открытие было сделано в конце 1990-х Солом Перлмуттером, Брайаном П. Шмидтом и Адамом Риссом при наблюдении сверхновых типа Ia. Яркость взрыва этих звёзд практически неизменна, поэтому по яркости света с Земли можно определить расстояние, на котором взрыв произошёл.
Другой способ определения расстояния — эффект Доплера (красное смещение). Результаты должны быть одинаковы, однако расстояние, вычисленное при помощи сверхновых Ia, превышало значение, определённое по методу красного смещения. Единственным объяснением было то, что Вселенная расширяется с ускорением.
На данный момент исследования в области космологии продолжаются. Одни учёные защищают бесконечность времени и пространства вселенной, другие — конечность. Но каким образом можно доказать истинность той или иной точки зрения?
Наиболее популярная модель нашей Вселенной, включающая темную энергию. Первые 6-7 млрд. лет галактики двигались с замедлением, далее вышли на равномерное, а затем ускоренное движение.
Можно ли доказать бесконечность Вселенной?
Первая попытка: космическое путешествие
Самый простой для понимания и сложный для исполнения способ — космическое путешествие. Для его представления следует сделать ряд допущений:
- Космический корабль должен двигаться со сверхсветовой скоростью (299 792 458 м/с) и иметь бесконечный запас топлива;
- Путешественник должен быть бессмертен и не иметь потребностей.
Если Вселенная бесконечна, то путешественник будет вечно двигаться на космическом корабле по бесконечному пространству. Он никогда не сможет понять, действительно ли бесконечен космос. Даже пройдя огромные расстояния, путешественник не сможет утверждать, что Вселенная не имеет края, ведь он попросту не осознает это. Проблема состоит в понимании бесконечности: трудно представить её теоретически и невозможно на практике — у неё нет аналога.
Вторая попытка: изучение Большого взрыва
Большой взрыв является общепринятой космологической моделью рождения Вселенной. Его исследование помогает открывать свойства современного космоса и, возможно, поможет найти ответ на интересующий нас вопрос. Однако доподлинно неизвестно, почему произошёл Большой взрыв — учёные не пришли к окончательному выводу.
Хронология Большого взрыва. Температура указана в кельвинах. Источник: starcatalog.ru.
Третья попытка: измерение плотности вещества
Как было сказано, если плотность вещества меньше или равна некоторому критическому значению, то Вселенная бесконечна. Если больше критического значения, то конечна. По сегодняшним данным наиболее вероятно, что плотность вещества меньше или равна критическому значению, следовательно, Вселенная плоская и бесконечна.
Однако существуют другие формы материи: тёмная материя и и экзотические формы материи, которые мы не можем наблюдать и исследовать. Они могут нарушить баланс, и значение плотности станет выше критического.
Сейчас учёные исследуют Вселенную, чтобы дать ответ на вопрос о её бесконечности. Возможно, этот ответ появится в ближайшее десятилетие, а пока что важно изучать имеющиеся данные.
Что почитать?
- Стивен Хокинг — «Краткая история времени», «Теория всего», «Краткие ответы на большие вопросы», «Кратчайшая история времени», «О вселенной в двух словах», «Природа пространства и времени»
- Стивен Вайнберг — «Гравитация и космология», «Первые три минуты», «Объясняя мир»
- Константин Циолковский — «Жизнь Вселенной»
- Нил Деграсс Тайсон — «Астрофизика с космической скоростью», «История всего. 14 миллиардов лет космической эволюции»
- Аристотель — «О небе»
- Джордано Бруно — «Пир на пепле», «О бесконечном, Вселенной и мирах».
- В.Н. Лукаш, Е. В. Михеева — «Актуальные проблемы космологии»
- Д. Шама — «Современная космология»
- Ф. Пиблс — «Физическая космология»
- Дэйв Голберг — «Вселенная в зеркале заднего вида»
Книги, которые стоит прочесть для понимания современных космологических теорий
Что посмотреть?
- «Удивительное путешествие от Земли до конца вселенной — живём ли мы в бесконечной вселенной?» — National geographic
- «Наша бесконечная Вселенная» — К.Р. Коллинз
- «Путешествие на край Вселенной» — National geographic
- «Телескоп Хаббл в 3D» — Тони Майерс
- «Бесконечная бесконечность» — BBC Horizon
- «Каковы размеры Вселенной» — BBC Horizon
Бесконечность Вселенной — FAQ
Это была информация о бесконечности Вселенной, известная на данный момент. Однако осталось несколько интересных вопросов:
Сейчас наиболее вероятно, что Вселенная бесконечна. Это подтверждают недавние исследования. Учёные с точностью до 1% смогли измерить дистанции между галактиками на расстоянии более 6 миллиардов световых лет от Земли, что позволило сделать вывод о модели Вселенной. Астрономы говорят, что их результаты согласуются и подтверждают теорию о плоской бесконечной Вселенной.
Пример с бессмертным космическим путешественником подтверждает, что участнику событий представить бесконечность невозможно, но наблюдатель сможет это сделать. Представьте отрезок, на одном конце которого ноль, а на другом единица, и попробуйте отметить ещё одно число в интервале между нулём и единицей. 0,5? Есть числа меньше. 0, 25? Ещё меньше. Это только рациональные числа. А если постепенно помещать на числовую прямую в этот интервал действительные числа — рациональные и иррациональные? Вы будете перебирать их вечно. Это и есть наглядная демонстрация бесконечности. Аналогичное происходит с бесконечной Вселенной.
Такая модель будет конечной, но неограниченной, как сферическая поверхность. Не будет условной стены или края: Вселенная будет замыкать саму себя. Если мы будем двигаться из определённой точки пространства в определённом направлении, рано или поздно мы вернёмся в эту точку.
Учёные считают, что ускорение расширяющейся Вселенной связано с воздействием на неё тёмной энергии.
Тёмная энергия — особый вид энергии, который невозможно обнаружить с помощью стандартных методов наблюдения. Считается, что тёмная энергия управляет процессами, происходящими во Вселенной. Однако сейчас она мало изучена, поэтому выводы делать рано.
Тёмная материя — особый вид материи, не взаимодействующий с электромагнитным излучением, поэтому названа «тёмной». Единственная сила, с которой взаимодействует тёмная материя, — гравитационная сила. Этот вид материи был обнаружен благодаря воздействию гравитации.
Вселенная расширяется достаточно медленно, вследствие чего гравитационное притяжение между галактиками замедляет его, а затем останавливает. После галактики начинают сближаться друг с другом, и Вселенная сжимается. Расстояние между двумя соседними галактиками сначала равно нулю, затем увеличивается до критического значения, а после снова равно нулю.
Вселенная расширяется настолько быстро, что гравитационное притяжение не может остановить его, лишь немного замедляет. Расстояние между двумя соседними галактиками сначала равно нулю, но в конечном счёте они разлетаются с постоянной скоростью.
Вселенная расширяется, и этой скорости достаточно для того, чтобы предотвратить сжатие. Расстояние между двумя соседними галактиками сначала равно нулю, оно постоянно растёт. В таком случае скорость разлёта галактик уменьшается, но никогда не будет равняться нулю.
Источник