Меню

За равные промежутки времени радиус вектор солнце планета заметает равные площади

Правило равных площадей и эквант

Согласно Первому закону Кеплера, все планеты, включая Землю, обращаются вокруг Солнца по эллиптическим орбитам, причем Солнце находится не в их центрах, а в некоторых смещенных от центра точках, расположенных на больших осях этих эллипсов – в одном из фокусов эллипса каждой из орбит (см. техническое замечание 18). Эксцентриситет эллипса e определяется так, что расстояние от любого его фокуса до центра равно ea , где a – длина большой полуоси эллипса. Также, согласно Второму закону Кеплера, скорость каждой планеты при ее перемещении по орбите не постоянна, а изменяется таким образом, что отрезок (или радиус‑вектор), проведенный к ней от Солнца, заметает равные по площади участки плоскости за одинаковые отрезки времени.

Существует другой способ приближенно сформулировать тот же Второй закон, имеющий близкое отношение к старой идее экванта, которую использовал в своей астрономической системе Птолемей. Вместо того чтобы рассматривать отрезок, проведенный к планете от Солнца, рассмотрим отрезок к ней же из другой точки, а именно из пустого фокуса ее эллиптической орбиты. Эксцентриситет e некоторых орбит планет довольно значителен, и им нельзя пренебрегать. Но его квадрат e ² очень мал для любой планеты. Например, среди планет самый большой эксцентриситет у орбиты Меркурия, для него e = 0,206, а e ² = 0,042; для Земли же e ² = 0,00028. Поэтому при вычислении планетных движений достаточно аппроксимировать реальные их законы уравнениями, в которых присутствуют слагаемые, пропорциональные эксцентриситету e , или независимые от него слагаемые, и игнорировать такие их члены, которые пропорциональны квадрату эксцентриситета e ² или его степеням высших порядков. В этом приближении Второй закон Кеплера эквивалентен утверждению, что отрезок, проводимый из пустого фокуса планетной орбиты к планете, заметает равные углы за равные промежутки времени. Иначе говоря, эта линия вращается с постоянной угловой скоростью.

На конкретном примере покажем, что если

– это скорость, с которой радиус‑вектор от Солнца к планете заметает равные площади, а

(фи с точкой) – скорость изменения угла между радиус‑вектором от пустого фокуса к той же планете и большой осью ее орбиты, то верно равенство

где O (e ²) – обозначение всех членов, пропорциональных e ² или степеням e еще более высоких порядков, а R – коэффициент, значение которого зависит от применяемых единиц измерения углов. Если мы меряем углы в градусах, то R = 360°/2π = 57,293…°, то есть угол размером в один радиан . Или мы можем измерять углы в радианах, и тогда R = 1. Второй закон Кеплера гласит, что за одинаковые промежутки времени площадь, заметаемая радиус‑вектором планеты, одна и та же. Это значит, что

– величина постоянная, а, следовательно, что постоянна и с точностью до слагаемых высшего порядка, пропорциональных e ². Поэтому с достаточной точностью можно сказать, что за заданный промежуток времени угол, на который изменяется радиус‑вектор планеты из пустого фокуса ее орбиты, всегда один и тот же.

Что касается описанной Птолемеем теории, центр эпицикла каждой планеты обращается вокруг Земли по круговой орбите, деференту, но Земля находится не в центре деферента. Орбита является эксцентричной, то есть Земля находится в точке, отделенной от центра деферента небольшим расстоянием. Мало того, скорость, с которой центр эпицикла обращается вокруг Земли, не постоянна, и угловая скорость, с которой луч от Земли к этому центру поворачивается, тоже не постоянна. Чтобы детально учесть все особенности наблюдаемого движения планет, Птолемей изобрел понятие экванта. Это точка по другую сторону от центра деферента по отношению к Земле, которая находится на том же расстоянии от центра, что и Земля. Луч, проводимый к центру эпицикла от этого экванта (а не от Земли), и должен был описывать равные углы в одни и те же промежутки времени.

Читайте также:  Какая планета больше солнца во вселенной

Внимательный читатель уже заметил, что это очень похоже на картину, описываемую законами Кеплера. Конечно, роли Солнца и Земли в астрономических системах мира Птолемея и Коперника противоположны, но пустой фокус эллипса в теории Кеплера играет ту же самую роль, что и эквант в теории Птолемея, а Второй закон Кеплера объясняет, почему введение экванта помогло улучшить теоретические предсказания видимых положений планет по теории Птолемея.

Теперь докажем равенство (1). Определим θ как угол между большой осью эллипса и отрезком, соединяющим Солнце и планету, и вспомним, что φ определен как угол между той же большой осью и отрезком, соединяющим планету и пустой фокус. Так же, как в техническом замечании 18, обозначим длины этих отрезков r + и r – то есть расстояния от Солнца до планеты и от планеты до пустого фокуса орбиты соответственно. Как было показано, они равны

где х – горизонтальная координата точки на эллипсе, то есть расстояние между точкой и прямой, секущей эллипс вдоль его малой оси.

Косинус угла определяется в тригонометрии с использованием прямоугольного треугольника, один из углов которого равен данному: косинусом называется отношение длины катета, прилежащего к этому углу, к длине гипотенузы треугольника. Поэтому из рис. 15 мы можем записать:

Рис. 15. Орбитальное движение планеты по эллипсу. Орбита планеты вычерчена здесь как эллипс, имеющий эксцентриситет (как и на рис. 12) около 0,8 – значительно больше, чем у какой‑либо планеты Солнечной системы. Отрезки, обозначенные r + и r , соединяют планету, соответственно, с Солнцем и с противоположным ему, пустым фокусом эллипса.

Уравнение слева мы можем решить, найдя из него x :

Подставляя результат в формулу для cos φ, выражаем связь между углами θ и φ:

Поскольку равенство справедливо при любых значениях угла θ, изменение в левой части равенства должно быть равно изменению в правой части при любом изменении θ. Допустим, мы производим бесконечно малое его изменение δθ (дельта тета). Чтобы рассчитать, насколько изменится φ, прибегнем к правилу дифференциального исчисления, согласно которому изменение любого угла α (это может быть θ или φ) на величину δα (дельта альфа) приводит к изменению cos α на величину – (δα/R ) sin α. Оттуда же при изменении любой функции f , такой, например, как знаменатель в уравнении (5), на ничтожно малую величину δf изменение в отношении 1/f составляет −δf /f 2. Приравняв соответствующие изменения с обеих сторон равенства, получаем:

Теперь нам нужна формула, связывающая sin φ и sin θ. Для этого посмотрим на рис. 15 и обратим внимание, что вертикальная координата y точки на линии эллипса выражается как y = r + sin θ, а также y = r − sin φ, и, поделив их, сократив y , получаем:

Совмещая уравнения (7) и (6), имеем:

Итак, какова же площадь, описываемая радиус‑вектором планеты, проведенным от Солнца, когда угол θ изменяется на δθ? Измеряя углы в градусах, мы можем сказать, что это площадь равнобедренного треугольника, две равные стороны которого имеют длину r +, а третья – маленькая часть дуги общей длиной 2πr + окружности радиусом r +, равная 2πr + × δθ/360°. Она равна

Читайте также:  Черноземье мое черноземье солнце падает

В этой формуле поставлен минус, поскольку мы хотим, чтобы величина δA росла, если увеличивается угол φ; но если вспомнить, как мы определили эти углы, φ будет расти в том случае, если уменьшается θ, поэтому δφ больше нуля, когда δθ меньше нуля. Поэтому уравнение (8) можно переписать в виде:

Принимая, что δA и δφ – описываемая первым радиус‑вектором площадь и угол поворота второго радиус‑вектора за ничтожно малый промежуток времени δt , и поделив обе части уравнения (10) на δt , найдем соответствие между описываемыми площадями и углами в виде равенства

Нами получено точное равенство. Но теперь посмотрим, как оно себя ведет в том случае, когда e очень мал. Числитель второй дроби в уравнении (11) имеет вид (1 − e cos θ)² = 1 − 2e cos θ + e ²cos²θ, так что слагаемые нулевого и первого порядка в числителе и знаменателе дроби одни и те же, и вся разница между числителем и знаменателем заключается в коэффициентах членов, пропорциональных e ². И значит, уравнение (11) полностью соответствует искомому нами с самого начала равенству (1). Для большей определенности мы можем оставить в уравнении (11) члены порядка e ²:

где O (e ³) обозначает члены, пропорциональные e ³ или более высоким степеням e .

Источник

Закон Кеплера

Зако́ны Ке́плера — семейство физических законов, открытых Иоганном Кеплером, описывающих движение планет вокруг Солнца.

Первый закон Кеплера (Закон эллипсов)

Каждая планета Солнечной системы обращается по эллипсу, в одном из фокусов которого находится Солнце.

Форма эллипса и степень его сходства с окружностью характеризуется отношением , где c — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), a — большая полуось. Величина e называется эксцентриситетом эллипса. При c = 0 и e = 0 эллипс превращается в окружность.

Закон всемирного тяготения Ньютона гласит, что «каждый объект во вселенной притягивает каждый другой объект по линии соединяющей центры масс объектов, пропорционально массе каждого объекта, и обратно пропорционально квадрату расстояния между объектами». Это предполагает, что ускорение a имеет форму

В координатной форме запишем

Подставляя и во второе уравнение, получим

После интегрирования запишем выражение

для некоторой константы , которая является удельным угловым моментом ().Пусть

Уравнение движения в направлении становится равным

Закон всемирного тяготения Ньютона связывает силу на единицу массы с расстоянием как

где G — универсальная гравитационная константа и M — масса звезды.

Это дифференциальное уравнение имеет общее решение:

для произвольных констант интегрирования e и θ0.

Заменяя u на 1/r и полагая θ0 = 0, получим:

Мы получили уравнение конического сечения с эксцентриситетом e и началом системы координат в одном из фокусов. Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона.

Второй закон Кеплера (Закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные времена радиус-вектор, соединяющий Солнце и планету, заметает сектора равной площади.

Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кепплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии бо́льшую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

Читайте также:  Проснуться вместе с солнцем

По определению угловой момент точечной частицы с массой m и скоростью записывается в виде:

.

где — радиус-вектор частицы а — импульс частицы.

.

В результате мы имеем

.

Продифференцируем обе части уравнения по времени

поскольку векторное произведение параллельных векторов равно нулю. Заметим, что F всегда параллелен r, поскольку сила радиальная, и p всегда параллелен v по определению. Таким образом можно утверждать, что — константа.

Третий закон Кеплера (Гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.

, где T1 и T2 — периоды обращения двух планет вокруг Солнца, а a1 и a2 — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты: , где M – масса Солнца, а m1 и m2 – массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Второй закон Кеплера утверждает, что радиус-вектор обращающегося тела заметает равные площади за равные промежутки времени. Если теперь мы возьмём очень малые промежутки времени в момент, когда планета находится в точках A и B (перигелий и афелий), то мы сможем аппроксимировать площадь треугольниками с высотами, равными расстоянию от планеты до Солнца, и основанием, равным произведению скорости планеты на время.

Используя закон сохранения энергии для полной энергии планеты в точках A и B, запишем

Теперь, когда мы нашли VB , мы можем найти секториальную скорость. Так как она постоянна, то можем выбрать любую точку эллипса: например, для точки B получим

Однако полная площадь эллипса равна (что равно πab , поскольку ). Время полного оборота, таким образом, равно

Заметим, что если масса m не пренебрежимо мала по сравнению с M, то планета будет обращаться вокруг Солнца с той же скоростью и по той же орбите, что и материальная точка, обращающаяся вокруг массы M + m (см. приведённая масса). При этом массу M в последней формуле нужно заменить на M + m :

Wikimedia Foundation . 2010 .

Смотреть что такое «Закон Кеплера» в других словарях:

ЗАКОН КЕПЛЕРА — см. Кеплер. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

закон Кеплера — Keplerio dėsnis statusas T sritis fizika atitikmenys: angl. Kepler’s law vok. Keplersches Gesetz, n rus. закон Кеплера, m pranc. loi de Kepler, f … Fizikos terminų žodynas

Первый закон Кеплера — Законы Кеплера семейство физических законов, открытых Иоганном Кеплером, описывающих движение планет вокруг Солнца. Первый закон Кеплера (Закон эллипсов) Первый закон Кеплера. Каждая планета Солнечной системы обращается по … Википедия

1-й закон Кеплера — … Википедия

1 закон Кеплера — … Википедия

2-й закон Кеплера — … Википедия

2 закон Кеплера — … Википедия

3-й закон Кеплера — … Википедия

3 закон Кеплера — … Википедия

Второй закон Кеплера — … Википедия

Источник

Adblock
detector