Источник энергии Солнца
Для поддержания наблюдаемой светимости Солнца в течение длительного времени необходимы достаточные запасы его внутренней энергии и процессы, перерабатывающие эту энергию в излучение. На первый взгляд, энергия, выделяемая одним килограммом солнечного вещества в секунду, равная:
— величина небольшая, она примерно равна количеству теплоты, выделяемому одним килограммом гниющих листьев. Но химической энергии, запасенной в листьях, при таком энерговыделении едва хватает на год. Солнце, по современным данным, существует около 5 млрд, лет, причем его светимость за это время существенно не изменилась, следовательно, запасов внутренней энергии солнечного вещества должно хватить еще на миллиарды лет.
Зная светимость Солнца T= 4* 10 26 Вт и продолжительность его жизни t=5*10 9 лет = 1,5-10 17 секунд, легко найти энергию, выделенную Солнцем за этот промежуток времени: 4*10 26 Вт * 1,5-10 17 с = 6*10 43 Дж. Поделив эту энергию на массу Солнца, получим, что за это время жизни Солнца каждый килограмм его вещества выделил 3*10 13 Дж энергии.
Удельная теплота сгорания самого калорийного химического горючего — бензина — равна 4,6*10 7 Дж/кг, что значительно меньше внутренней энергии, выделяемой 1 кг солнечного вещества. Поэтому идея о свечении Солнца за счет химических реакций, высказанная в середине XIX в., была несостоятельной. Если бы это было так, то запасов энергии хватило бы только на 800 лет.
Примерно в то же время известный немецкий физик Г. Гельмгольц (1821 —1894 гг.) выдвинул гипотезу, которой пытался объяснить энерговыделение Солнца за счет его гравитационного сжатия; сжатие приводит к выделению тепла и к уменьшению запасов потенциальной энергии солнечного вещества. Однако простые подсчеты показывают, что при современной светимости Солнца запасов его потенциальной энергии хватило бы всего на несколько миллионов лет.
Единственным приемлемым источником энергии, поддерживающим излучение Солнца, может служить термоядерная энергия, выделяемая при образовании (синтезе) ядер атомов гелия, из ядер водорода.
Для протекания ядерных реакций необходима температура в несколько миллионов кельвинов, при которой участвующие в реакции частицы с одинаковым электрическим зарядом смогли бы получить достаточную энергию для взаимного сближения, преодоления электрических сил отталкивания и слияния в одно новое ядро. Ядерные реакции, протекающие при высоких температурах, получили название термоядерных реакций. Именно такие реакции протекают в недрах Солнца.
Расчеты показывают, что в результате термоядерных реакций синтеза из водорода массой 1 кг образуется гелий массой 0,99 кг и выделяется около 9*10 14 Дж энергии. Если сравнить эту величину с энергией (3*10 13 Дж), которую Солнце уже выделило каждым килограммом водорода за 5 млрд, лет своей жизни, то оставшегося в нем водорода должно было бы хватить почти на 150 млрд. лет. Но так как реакции синтеза протекают только в ядре Солнца, содержащем примерно десятую долю всей его массы, то запасов ядерного горючего хватит еще на 10 млрд. лет.
Источник
Как рождается энергия Солнца?
Есть одна причина, по которой Земля является единственным местом в Солнечной системе, где существует и процветает жизнь. Конечно, ученые подозревают, что под ледяной поверхностью Европы или Энцелада может тоже существовать микробная или даже водная форма жизни, также ее могут найти и в метановых озерах Титана. Но до поры до времени Земля остается единственным местом, которое обладает всеми необходимыми условиями для существования жизни.
Одна из причин этому заключается в том, что Земля расположена в потенциально обитаемой зоне вокруг Солнца (так называемой «зоне Златовласки»). Это означает, что она находится в нужном месте (не слишком далеко и не слишком близко), чтобы получать обильную энергию Солнца, в которую входит свет и тепло, необходимые для протекания химических реакций. Но как именно Солнце обеспечивает нас энергией? Какие этапы проходит энергия на пути к нам, на планету Земля?
Ответ начинается с того, что Солнце, как и все звезды, может вырабатывать энергию, поскольку является, по сути, массивным термоядерным реактором. Ученые считают, что оно началось с огромного облака газа и частиц (т. е. туманности), которое коллапсировало под силой собственной тяжести — это так называемая теория туманности. В этом процессе родился не только большой шар света в центре нашей Солнечной системы, но и водород, собранный в этом центре, начал синтезироваться с образованием солнечной энергии.
Технически известный как ядерный синтез, этот процесс высвобождает огромное количество энергии в виде тепла и света. Но на пути из центра Солнца к планете Земля эта энергия проходит через ряд важных этапов. В конце концов, все сводится к слоям Солнца, и роль каждого из них играет важную роль в процессе обеспечения нашей планеты важнейшей для жизни энергией.
Ядро Солнца — это область, которая простирается от центра до 20-25% радиуса светила. Именно здесь, в ядре, производится энергия, порождаемая преобразованием атомов водорода (H) в молекулы гелия (He). Это возможно благодаря огромному давлению и высокой температуре, присущим ядру, которые, по оценкам, эквивалентны 250 миллиардам атмосфер (25,33 триллиона кПа) и 15,7 миллионам градусов по Цельсию, соответственно.
Конечным результатом является слияние четырех протонов (молекул водорода) в одну альфа-частицу — два протона и два нейтрона, связанных между собой в частицу, идентичной ядру гелия. В этом процессе высвобождается два позитрона, а также два нейтрино (что меняет два протона на нейтроны) и энергия.
Ядро — единственная часть Солнца, которая производит значительное количество тепла в процессе синтеза. По сути, 99% энергии, произведенной Солнцем, содержится в пределах 24% радиуса Солнца. К 30% радиуса синтез почти целиком прекращается. Остаток Солнца подогревается энергией, которая передается из ядра через последовательные слои, в конечном счете достигая солнечной фотосферы и утекая в космос в виде солнечного света или кинетической энергии частиц.
Солнце высвобождает энергию, преобразуя массу в энергию со скоростью 4,26 миллиона метрических тонн в секунду, что эквивалентно 38,460 септиллионам ватт в секунду. Чтобы вам было понятнее, это эквивалентно взрывам 1 820 000 000 «царь-бомб» — самой мощной термоядерной бомбы в истории человечества.
Зона лучистого переноса
Эта зона находится сразу после ядра и простирается на 0,7 солнечного радиуса. В этом слое нет тепловой конвекции, но солнечная материя очень горячая и достаточно плотная, чтобы тепловое излучение запросто передавало интенсивное тепло из ядра наружу. В основном она включает ионы водорода и гелия, испускающие фотоны, которые проходят короткое расстояние и поглощаются другими ионами.
Конвективная зона
Это внешний слой Солнца, на долю которого приходится все, что выходит за рамки 70% внутреннего радиуса Солнца (и уходит примерно на 200 000 километров ниже поверхности). Здесь температура ниже, чем в радиационной зоне, и тяжелые атомы не полностью ионизированы. В результате радиационный перенос тепла проходит менее эффективно, и плотность плазмы достаточно низка, чтобы позволить появляться конвективным потокам.
Из-за этого поднимающиеся тепловые ячейки переносят большую часть тепла наружу к фотосфере Солнца. После тог, как эти ячейки поднимаются чуть ниже фотосферической поверхности, их материал охлаждается, а плотность увеличивается. Это приводит к тому, что они опускаются к основанию конвективной зоны снова — где забирают еще тепло и продолжают конвективный цикл.
На поверхности Солнца температура падает до примерно 5700 градусов по Цельсию. Турбулентная конвекция этого слоя Солнца также вызывает эффект, который вырабатывает магнитные северный и южный полюса по всей поверхности Солнца.
Именно в этом слое также появляются солнечные пятна, которые кажутся темными по сравнению с окружающей область. Эти пятна соответствуют концентрациям потоков магнитного поля, которые осуществляют конвекцию и приводят к падению температуры на поверхности по сравнению с окружающим материалом.
Фотосфера
Наконец, есть фотосфера, видимая поверхность Солнца. Именно здесь солнечный свет и тепло, излученные и поднятые на поверхность, распространяются в космос. Температуры в этом слое варьируются между 4500 и 6000 градусами. Поскольку верхняя часть фотосферы холоднее нижней, Солнце кажется ярче в центре и темнее по бокам: это явление известно как затемнение лимба.
Энергия, испускаемая фотосферой, распространяется в космосе и достигает атмосферы Земли и других планет Солнечной системы. Здесь, на Земле, верхний слой атмосферы (озоновый слой) фильтрует большую часть ультрафиолетового излучения Солнца, но пропускает часть на поверхность. Затем эта энергия поглощается воздухом и земной корой, согревает нашу планету и обеспечивает организмы источником энергии.
Солнце находится в центре биологических и химических процессов на Земле. Без него жизненный цикл растений и животных закончился бы, циркадные ритмы всех земных существ были бы сорваны, и жизнь на Земле перестала бы существовать. Важность Солнца была признана еще в доисторические времена, и многие культуры рассматривали его как божество (и зачастую помещали его в качестве главного божества в свои пантеоны).
Однако только в последние несколько столетий мы начали понимать процессы, которые питают Солнце. Благодаря постоянным исследованиям физиков, астрономов и биологов, мы теперь можем понять, как Солнце производит энергию и как она проходит через нашу Солнечную систему. Изучение известной Вселенной с ее разнообразием звездных систем и экзопланет также помогает нам провести аналогию с другими типами звезд.
Источник
Энергия солнца
Солнечная энергетика — использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой, то есть не производящей вредных отходов [1] .
Ныне солнечная энергетика широко применяется в случаях, когда малодоступность других источников энергии в совокупности с изобилием солнечного излучения оправдывает её экономически.
Отдельные лица и организации также используют её из идеологических соображений (энвайронментализм), эксплуатируя экологическую безвредность распределённой [2] солнечной энергетики. См., например, «Глобальный фонд солнечной энергии», инициированный «Зелёным крестом» Михаила Горбачёва [3] .
20 ноября 1980, Стив Птачек совершает полет на самолёте, питающемся только солнечной энергией.
Содержание
Земные условия
Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (вне атмосферы Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения атмосферой Земли, максимальный поток солнечного излучения на уровне моря — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную площадку как минимум в три раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше. Это количество энергии с единицы площади определяет возможности солнечной энергетики.
Перспективы выработки солнечной энергии также уменьшаются из-за глобального затемнения — антропогенного уменьшения солнечного излучения, доходящего до поверхности Земли.
Способы получения электричества и тепла из солнечного излучения
- Получение электроэнергии с помощью фотоэлементов.
- гелиотермальная энергетика — Нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).
- Термовоздушные электростанции (преобразование солнечной энергию в энергию воздушного потока, направляемого на турбогенератор).
- Солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество — запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.
Достоинства солнечной энергетики
- Общедоступность и неисчерпаемость источника.
- Теоретически, полная безопасность для окружающей среды (однако в настоящее время в производстве фотоэлементов и в них самих используются вредные вещества). Существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).
Недостатки солнечной энергетики
1. Фундаментальные проблемы
- Из-за относительно небольшой величины солнечной постоянной для солнечной энергетики требуется использование больших площадей земли под электростанции (например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров). Однако, это недостаток не так велик, например, гидроэнергетика выводит из пользования заметно большие участки земли. К тому же фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8—2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота.
Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.
- Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата. В разных местах среднее количество солнечных дней в году может различаться очень сильно.
2. Технические проблемы
- Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, мощность электростанции может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков нужно или использовать эффективные электрические аккумуляторы (на сегодняшний день это нерешённая проблема), либо строить гидроаккумулирующие станции, которые тоже занимают большую территорию, либо использовать концепцию водородной энергетики, которая также пока далека от экономической эффективности.
Проблема зависимости мощности солнечной электростанции от времени суток и погодных условий решается в случае солнечных аэростатных электростанций.
- Дороговизна солнечных фотоэлементов. Вероятно, с развитием технологии этот недостаток преодолеют. В 1990—2005 гг. цены на фотоэлементы снижались в среднем на 4 % в год.
- Недостаточный КПД солнечных элементов (вероятно, будет вскоре увеличен).
- Поверхность фотопанелей нужно очищать от пыли и других загрязнений. При их площади в несколько квадратных километров это может вызвать затруднения.
- Эффективность фотоэлектрических элементов заметно падает при их нагреве, поэтому возникает необходимость в установке систем охлаждения, обычно водяных.
- Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться.
3. Экологические проблемы
- Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ. Современные фотоэлементы имеют ограниченный срок службы (30—50 лет), и массовое применение поставит в ближайшее же время сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения.
В последнее время начинает активно развиваться производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния. Из-за низкого содержания кремния тонкоплёночные фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность. Так, например, в 2005 г. компания «Shell» приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству кремниевых фотоэлектрических элементов.
Типы фотоэлектрических элементов
- Монокристаллические кремниевые
- Поликристаллические кремниевые
- Тонкоплёночные
В 2006 г. тонкоплёночные фотоэлементы занимали 7 % долю рынка. В 2005 г. на тонкоплёночные фотоэлементы приходилось 6 % рынка. В 2007 г. доля тонкоплёночных технологий увеличилась до 8 %.
За период с 1999 г. по 2006 г. поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80 %.
Итоги развития фотоэлементной отрасли
Если в 1985 г. все установленные мощности мира составляли 21 МВт, то за один только 2006 г. было установлено 1744 МВт (по данным компании Navigant consulting), что на 19 % больше, чем в 2005 г. В Германии установленные мощности выросли на 960 МВт, что на на 16 % больше, чем в 2005 г. В Японии установленные мощности выросли на 296,5 МВт. В США установленные мощности выросли на 139,5 МВт (+ 33 %).
К 2005 году суммарные установленные мощности достигли 5 ГВт. Инвестиции в 2005 г. в строительство новых заводов по производству фотоэлементов составили 1 млрд $.
Ввод в строй новых мощностей в 2005 г.: Германия — 57 %; Япония — 20 %; США — 7 %; остальной мир — 16 %. Доля стран в суммарных установленных мощностях (на 2004 г.): Германия — 39 %; Япония — 30 %; США — 9 %; остальной мир — 22 %.
Производство фотоэлементов в мире выросло с 1656 МВт в 2005 г. до 1982,4 МВт. в 2006 г. Япония продолжает удерживать мировое лидерство в производстве — 44 % мирового рынка; в Европе производится 31 %. США производят 7 % от мирового производства, хотя в 2000 г. эта цифра доходила до 26 %.
В 2006 г. десять крупнейших производителей произвели 74 % фотоэлементов, в том числе:
- Sharp Solar — 22 %;
- Q-Cells — 12 %;
- Kyocera — 9 %;
- Suntech — 8 %;
- Sanyo — 6 %;
- Mitsubishi Electric — 6 %;
- Schott Solar — 5 %;
- Motech — 5 %;
- BP Solar — 4 %;
- SunPower Corporation — 3 %.
К 2010 г. установленная мощность установок на фотоэлементах достигнет 3,2—3,9 ГВт, а выручка производителей составит 18,6—23,1 млрд $/год.
Когда установленные мощности фотоэлементов в мире удваиваются, цена электричества, производимого солнечной энергетикой, падает на 20—30 %.
Минимальные цены на фотоэлементы (начало 2007 г.)
- Монокристаллические кремниевые — 4,30 $/Вт установленной мощности.
- Поликристаллические кремниевые — 4,31 $/Вт установленной мощности.
- Тонкоплёночные — 3,0 $/Вт установленной мощности.
Стоимость кристаллических фотоэлементов на 40—50 % состоит из стоимости кремния.
Освещение зданий
С помощью солнечного света можно освещать помещения в дневное время суток. Для этого применяются световые колодцы. Простейший вариант светового колодца — отверстие в потолке.
Световые колодцы применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы, и т.д.
Солнечная термальная энергетика
Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т.д., т.е. без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии.
В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.
В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09-$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04-$0,05 к 2015-2020 г.
В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.
Солнечная кухня
Солнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С. Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства «солнечной кухни» составляет $3 – $7. В развивающихся странах для приготовления пищи активно используются дрова.
Традиционные очаги для приготовления пищи имеют термическую эффективность около 10%. Использование дров для приготовления пищи приводит к массированной вырубке лесов. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн. тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг. дров.
Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.
Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 г. Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн. тонн в 2008-2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы.
Использование солнечной энергии в химическом производстве
Солнечная энергия может применяться в различных химических процессах. Например:
- Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
- Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м 2 . В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг. в год (около 10,4 кг. в день).
Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.
Солнечный транспорт
Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т.д.
Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта.
В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.
Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius. Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10%.
Источник