§ 6. Излучение
Вам хорошо известно, что основным источником тепла на Земле является Солнце. Каким же образом передаётся тепло от Солнца? Ведь Земля находится от него на расстоянии 15 • 10 7 км. Всё это пространство за пределами нашей атмосферы содержит очень разреженное вещество.
Как известно, в вакууме перенос энергии путём теплопроводности невозможен. Не может происходить он и за счёт конвекции. Следовательно, существует ещё один вид теплопередачи.
Излучение в природе
Изучим этот вид теплопередачи с помощью опыта.
Соединим жидкостный манометр при помощи резиновой трубки с теплоприёмником (рис. 12).
Если к тёмной поверхности теплоприёмника поднести кусок металла, нагретый до высокой температуры, то уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится (рис. 12, а). Очевидно, воздух в теп-лоприёмнике нагрелся и расширился. Быстрое нагревание воздуха в теплоприёмнике можно объяснить лишь передачей ему энергии от нагретого тела.
Рис. 12. Передача энергии путем излучения
Энергия в данном случае передавалась не теплопроводностью. Ведь между нагретым телом и теплоприёмником находился воздух — плохой проводник тепла. Конвекция здесь также не может наблюдаться, поскольку тепло-приёмник находится рядом с нагретым телом, а не над ним. Следовательно, в данном случае передача энергии происходит путём излучения.
Передача энергии излучением отличается от других видов теплопередачи. Она может осуществляться в полном вакууме.
Излучают энергию все тела: и сильно нагретые, и слабо, например, тело человека, печь, электрическая лампочка и др. Но чем выше температура тела, тем больше энергии передаёт оно путём излучения. При этом энергия частично поглощается окружающими телами, а частично отражается. При поглощении энергии тела нагреваются по-разному, в зависимости от состояния поверхности.
Если повернуть теплоприёмник к нагретому металлическому телу сначала тёмной, а затем светлой стороной, то столбик жидкости в колене манометра, соединённом с теплоприёмником, в первом случае (см. рис. 12, а) понизится, а во втором (рис. 12, б) повысится. Это показывает, что тела с тёмной поверхностью лучше поглощают энергию, чем тела, имеющие светлую поверхность.
В то же время тела с тёмной поверхностью охлаждаются быстрее путём излучения, чем тела со светлой поверхностью. Например, в светлом чайнике горячая вода дольше сохраняет высокую температуру, чем в тёмном.
Серебристая поверхность метеозонда отражает солнечные лучи
Способность тел по-разному поглощать энергию излучения используется на практике. Так, поверхность воздушных метеозондов, крылья самолётов красят серебристой краской, чтобы они не нагревались солнцем. Если же, наоборот, необходимо использовать солнечную энергию, например в приборах, установленных на искусственных спутниках Земли, то эти части приборов окрашивают в тёмный цвет.
Вопросы
- Как на опыте показать передачу энергии излучением?
- Какие тела лучше, а какие хуже поглощают энергию излучения?
- Как учитывает человек на практике различную способность тел поглощать энергию излучения?
Упражнение 5
- Летом воздух в здании нагревается, получая энергию различными способами: через стены, через открытое окно, в которое входит тёплый воздух, через стекло, которое пропускает солнечную энергию. С каким видом теплопередачи мы имеем дело в каждом случае?
- Приведите примеры, показывающие, что тела с тёмной поверхностью сильнее нагреваются излучением, чем со светлой.
- Почему можно утверждать, что от Солнца к Земле энергия не может передаваться конвекцией и теплопроводностью? Каким способом она передаётся?
Задание
С помощью уличного термометра измерьте температуру сначала на солнечной стороне дома, затем на теневой. Объясните, почему различаются показания термометра.
Это любопытно.
Термос. Часто бывает необходимо сохранить пищу горячей или холодной. Чтобы помешать телу охладиться или нагреться, нужно уменьшить теплопередачу. При этом стремятся сделать так, чтобы энергия не передавалась ни одним видом теплопередачи: теплопроводностью, конвекцией, излучением. В этих целях используют термос (рис. 13).
Рис. 13. Устройство термоса
Он состоит из стеклянного сосуда 4 с двойными стенками. Внутренняя поверхность стенок покрыта блестящим металлическим слоем, а из пространства между стенками сосуда выкачан воздух. Лишённое воздуха пространство между стенками почти не проводит тепло. Металлический же слой, отражая, препятствует передаче энергии излучением. Чтобы защитить стекло от повреждений, термос помещают в специальный металлический или пластмассовый футляр 3. Сосуд закупоривается пробкой 2, а сверху навинчивается колпачок 1.
Теплопередача и растительный мир. В природе и жизни человека растительный мир играет исключительно важную роль. Жизнь всего живого на Земле невозможна без воды и воздуха.
В слоях воздуха, прилегающих к Земле, и почве постоянно происходит изменение температуры. Почва нагревается днём, так как поглощает энергию. Ночью, наоборот, она охлаждается — отдаёт энергию. На теплообмен между почвой и воздухом влияет наличие растительности, а также погода. Почва, покрытая растительностью, плохо прогревается излучением. Сильное охлаждение почвы наблюдается также в ясные, безоблачные ночи. Излучение от почвы свободно уходит в пространство. Ранней весной в такие ночи наблюдаются заморозки. Во время облачности уменьшается потеря энергии почвы путём излучения. Облака служат экраном.
Для повышения температуры почвы и предохранения посадок от заморозков используют теплицы. Стеклянные рамы или изготовленные из плёнки хорошо пропускают солнечное излучение <видимое). Днём почва нагревается. Ночью невидимое излучение почвы стекло или плёнка пропускают хуже. Почва не замерзает. Теплицы препятствуют также движению тёплого воздуха вверх — конвекции.
Вследствие этого температура в теплицах выше, чем в окружающем пространстве.
Источник
За счет чего солнце излучает энергию конвекция теплопередача излучение теплообмен
Тесты по астрономии 11 класс. Тема: «Солнце»
Правильный вариант ответа отмечен знаком +
1. Наша звезда Солнце является:
а.) Красным гигантом
+ с.) Желтым карликом
2. Каким термином характеризуется расстояние от Земли до Солнца?
+ в.) Астрономическая единица
3. Масса Солнца…
а.) Равна массе всех планет Солнечной системы
+ в.) Больше массы всех планет Солнечной системы
с.) Меньше всех планет Солнечной системы
4. Какие земные явления зависят от Солнечной активности?
а.) Землетрясения, бури, многочисленные катастрофы техногенного характера
в.) Землетрясения, ураганы, торнадо
+ с.) Магнитные бури, полярное сияние и повышение уровня ионизации в верхних слоях атмосферы
5. За счет чего Солнце излучает энергию?
6. Назовите имя ученого, доказавшего движение планет вокруг Солнца:
+ а.) Николай Коперник
в.) Джордано Бруно
с.) Галилео Галилей
7. Какова примерная температура ядра Солнца?
8. Ближайшую к Солнцу точку орбиты называют:
9. Какой вид излучения не относится к Солнцу?
а.) Солнечная радиация
тест 10. Какую долю (примерно) в элементном составе Солнца занимает водород?
11. Химический состав Солнца это:
+ а.) Водород, гелий, кислород, прочие элементы
в.) Водород, кислород, прочие элементы
с.) Водород, гелий
12. В каком направлении Солнце обращается вокруг своей оси?
а.) Вращение отсутствует
в.) Вращение осуществляется только отдельными слоями
+ с.) По направлению, в котором планеты движутся вокруг Солнца
13. Каким термином обозначается видимая для наблюдателя поверхность Солнца?
14. Выберите правильное определение «солнечного ветра»:
а.) Выброс вещества, находящегося в Солнечной короне
в.) Последняя из внешних оболочек Солнца
+ с.) Поток, состоящий из ионизированных частиц и распространяющийся до границ гелиосферы
15. Последний этап жизни Солнца называется:
а.) Нейтронная звезда
в.) Красный гигант
16. Назовите примерный возраст Солнца:
17. В какой области галактики Млечный Путь находится Солнце?
+ с.) Окраина рукава Ориона
18. Назовите научную миссию, занимающуюся изучением Солнца:
19. Как ученые называют фотосферные пятна, похожие на рисовые зерна:
в.) Солнечные пятна
тест-20. Какой из перечисленных терминов определяет холодные области, расположенные на яркой фотосфере?
21. Существует ли у Солнца магнитное поле?
с.) Нет достоверных данных
22. Источник энергии Солнца это:
а.) Реакции химического характера
+ в.) Термоядерные реакции синтеза (легких ядер)
23. Как называются массы звездного газа, поднимающиеся на сотни тысяч километров над поверхностью Солнца?
24. Цикл солнечной активности составляет:
25. Если на поверхности Солнца увеличивается количество пятен, то блеск звезды:
а.) Будет колебаться
+ с.) Почти не изменится
26. Определите, за сколько времени сжалось бы Солнце, если бы на нем вдруг исчезла сила газового давления:
27. Сколько планет обращается вокруг Солнца?
28. Вокруг чего движется Солнце?
а.) Только собственной оси
+ в.) Вокруг центра Галактики Млечный Путь
с.) Вокруг планеты Земля
29. Линейная скорость Солнца на экваторе составляет:
тест_30. Дайте верное определение понятию «солнечное пятно»:
а.) Вулканы на поверхности Солнца
+ в.) Области, имеющие пониженную температуру
с.) Кратеры от ударов малых небесных тел
31. При помощи, какой методики можно определить температуру на поверхности Солнца?
в.) Законов Кеплера
+ с.) Солнечного спектра
32. Назовите величину мощности излучения, приходящуюся на 1 кг Солнечного вещества?
33. За сколько суток происходит оборот Солнца вокруг собственной оси вблизи экватора?
34. Укажите среднюю плотность Солнца:
35. Когда для наблюдателя наступает солнечное затмение?
+ а.) Если Луна располагается между Солнцем и Землей
в.) Луна попадает в тень, отбрасываемую Землей
с.) Нет правильного ответа
36. Назовите звезду, являющуюся наиболее близкой к Солнцу:
в.) Альфа Центавра
+ с.) Проксима Центавра
37. Звезда, наиболее близкая к планете Земля, называется:
в.) Венера («Утренняя звезда»)
с.) Полярная звезда
38. Согласно современным данным, Солнце и другие звезды сформировались из:
+ а.) Газопылевого облака
в.) Большого взрыва
с.) Остатков других звезд и планет
39. В звезду какого типа превратится Солнце в процессе старения?
+ в.) Красный гигант
с.) Красный карлик
тест*40. В ходе каких процессов на Солнце происходят космические лучи и корпускулярные потоки?
а.) при солнечном ветре
+ в.) при хроматосферных вспышках
с.) при конвекционном движении
41. Основные элементы структуры хромосферы Солнца:
+ а.) Водород, кальций, гелий
с.) Водород, гелий
42. Укажите элементы, составляющие атмосферу Солнца:
+ а.) Корона, фотосфера
с.) Солнечный ветер
43. Благодаря наличию чего в клетках растений возможен процесс фотосинтеза?
44. Дайте определение линии на диске спутника или планеты, которая отделяет освещенное (т.н. «дневное») полушарие от темного («ночного»):
45. Дайте определение понятию эклиптика:
+ а.) Большой круг небесной сферы, по которому происходит видимое с Земли годичное движение Солнца относительно других звезд
в.) Движение Солнца вокруг собственной оси
с.) Расположение Солнца относительно планеты Земля
46. Выберите точное определение термина «хромосфера»:
а.) Внутренняя часть атмосферы Солнца, размер которой составляет порядка нескольких тысяч километров и доступен для наблюдения с Земли в ходе солнечного затмения, излучающая красный свет за счет наличии водорода
+ в.) Внешняя область Солнца, которую мы можем наблюдать как разреженный газовый слой, разогретый до температуры примерно 6000 К, из которого осуществляется излучение энергии в космос
с.) Внешняя атмосфера Солнца, располагающаяся над хромосферой, в состав которой входит горячий газ, простирающийся на миллионы километров относительно Солнца, который можно наблюдать в ходе полного солнечного затмения
47. На какой из нижеприведенных фотографий изображена солнечная корона?
48. Выберите из представленных изображений соответствующее протуберанцу:
49. Что, по мнению ученых, является причиной сильных выбросов материи на Солнце?
а.) Наличие сильных магнитных полей, расположенных около солнечных пятен +
в.) Короткопериодические, большие по объему взрывные выбросы вещества и света
с.) Большая масса яркого газа, который поднимается на сотни тысяч километров над т.н. лимбом (видимым краем диска Солнца)
Источник
Виды теплопередачи: теплопроводность, конвекция, излучение
1. Существуют три вида теплопередачи: теплопроводность, конвекция и излучение.
Теплопроводность можно наблюдать на следующем опыте. Если к металлическому стержню с помощью воска прикрепить несколько гвоздиков (рис. 68), закрепить один конец стержня в штативе, а другой нагревать на спиртовке, то через некоторое время гвоздики начнут отпадать от стержня: сначала отпадет тот гвоздик, который ближе к спиртовке, затем следующий и т.д.
Это происходит потому, что при повышении температуры воск начинает плавиться. Поскольку гвоздики отпадали не одновременно, а постепенно, можно сделать вывод, что температура стержня повышалась постепенно. Следовательно, постепенно увеличивалась и внутренняя энергия стержня, она передавалась от одного его конца к другому.
2. Передачу энергии при теплопроводности можно объяснить с точки зрения внутреннего строения вещества. Молекулы ближнего к спиртовке конца стержня получают от неё энергию, их энергия увеличивается, они начинают более интенсивно колебаться и передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь передают энергию своим соседям, и процесс передачи энергии распространяется по всему стержню. Увеличение кинетической энергии частиц приводит к повышению температуры стержня.
Важно, что при теплопроводности не происходит перемещения вещества, от одного тела к другому или от одной части тела к другой передается энергия.
Процесс передачи энергии от одного тела к другому или от одной части тела к другой благодаря тепловому движению частиц называется теплопроводностью.
3. Разные вещества обладают разной теплопроводностью. Если на дно пробирки, наполненной водой, положить кусочек льда и верхний её конец поместить над пламенем спиртовки, то через некоторое время вода в верхней части пробирки закипит, а лёд при этом не растает. Следовательно, вода, так же как и все жидкости, обладает плохой теплопроводностью.
Ещё более плохой теплопроводностью обладают газы. Возьмём пробирку, в которой нет ничего, кроме воздуха, и расположим её над пламенем спиртовки. Палец, помещённый в пробирку, не почувствует тепла. Следовательно, воздух и другие газы обладает плохой теплопроводностью.
Хорошими проводниками теплоты являются металлы, самыми плохими — сильно разреженные газы. Это объясняется особенностями их строения. Молекулы газов находятся друг от друга на расстояниях, больших, чем молекулы твёрдых тел, и значительно реже сталкиваются. Поэтому и передача энергии от одних молекул к другим в газах происходит не столь интенсивно, как в твёрдых телах. Теплопроводность жидкости занимает промежуточное положение между теплопроводностью газов и твёрдых тел.
4. Как известно, газы и жидкости плохо проводят теплоту. В то же время от батарей парового отопления нагревается воздух. Это происходит благодаря такому виду теплопроводности, как конвекция.
Если на дно колбы с водой аккуратно через трубочку опустить кристаллик марганцево-кислого калия и нагревать колбу снизу так, чтобы пламя касалось её в том месте, где лежит кристаллик, то можно увидеть, как со дна колбы будут подниматься окрашенные струйки воды. Достигнув верхних слоёв воды, эти струйки начнут опускаться.
Объясняется это явление так. Нижний слой воды нагревается от пламени спиртовки. Нагреваясь, вода расширяется, её объём увеличивается, а плотность соответственно уменьшается. На этот слой воды действует архимедова сила, которая выталкивает нагретый слой жидкости вверх. Его место занимает опустившийся вниз холодный слой воды, который, в свою очередь, нагреваясь, перемещается вверх и т.д. Следовательно, энергия в данном случае переносится поднимающимися потоками жидкости (рис. 69).
Подобным образом осуществляется теплопередача и в газах. Если вертушку, сделанную из бумаги, поместить над источником тепла (рис. 70), то вертушка начнёт вращаться. Это происходит потому, что нагретые менее плотные слои воздуха под действием выталкивающей силы поднимаются вверх, а более холодные движутся вниз и занимают их место, что и приводит к вращению вертушки.
Теплопередача, которая осуществляется в этом опыте и в опыте, изображенном на рисунках 69, 70, называется конвекцией.
Конвекция — вид теплопередачи, при котором энергия передаётся слоями жидкости или газа.
Конвекция связана с переносом вещества, поэтому она может осуществляться только в жидкостях и газах; в твёрдых телах конвекция не происходит.
5. Третий вид теплопередачи — излучение. Если поднести руку к спирали электроплитки, включённой в сеть, к горящей электрической лампочке, к нагретому утюгу, к батарее отопления и т.п., то можно явно ощутить тепло.
Если закрепить металлическую коробочку (теплоприёмник), одна сторона которой блестящая, а другая чёрная, в штативе, соединить коробочку с манометром, а затем налить в сосуд, у которого одна поверхность белая, а другая чёрная, кипяток, то, повернув сосуд к чёрной стороне теплоприёмника сначала белой стороной, а затем чёрной, можно заметить, что уровень жидкости в колене манометра, соединённом с теплоприёмником, понизится. При этом он сильнее понизится, когда сосуд обращён к теплоприёмнику чёрной стороной (рис. 71).
Понижение уровня жидкости в манометре происходит потому, что воздух в теплоприёмнике расширяется, это возможно при нагревании воздуха. Следовательно, воздух получает от сосуда с горячей водой энергию, нагревается и расширяется. Поскольку воздух обладает плохой теплопроводностью и конвекция в данном случае не происходит, т.к. плитка и теплоприёмник располагаются на одном уровне, то остаётся признать, что сосуд с горячей водой излучает энергию.
Опыт также показывает, что чёрная поверхность сосуда излучает больше энергии, чем белая. Об этом свидетельствует разный уровень жидкости в колене манометра, соединённом с теплоприёмником.
Чёрная поверхность не только излучает больше энергии, но и больше поглощает. Это можно также доказать экспериментально, если поднести включённую в сеть электроплитку сначала к блестящей стороне тенлоприёмника, а затем к чёрной. Во втором случае жидкость в колене манометра, соединённом с теплоприёмником, опустится ниже, чем в первом.
Таким образом, чёрные тела хорошо поглощают и излучают энергию, а белые или блестящие плохо испускают и плохо поглощают её. Они хорошо энергию отражают. Поэтому понятно, почему летом носят светлую одежду, почему дома на юге предпочитают красить в белый цвет.
Путём излучения энергия передаётся от Солнца к Земле. Поскольку пространство между Солнцем и Землёй представляет собой вакуум (высота атмосферы Земли много меньше расстояния от неё до Солнца), то энергия не может передаваться ни путём конвекции, ни путём теплопроводности. Таким образом, для передачи энергии путём излучения не требуется наличия какой-либо среды, эта теплопередача может осуществляться и в вакууме.
ПРИМЕРЫ ЗАДАНИЙ
Часть 1
1. В твёрдых телах теплопередача может осуществляться путём
1) конвекции
2) излучения и конвекции
3) теплопроводности
4) конвекции и теплопроводности
2. Теплопередача путём конвекции может происходить
1) только в газах
2) только в жидкостях
3) только в газах и жидкостях
4) в газах, жидкостях и твёрдых телах
3. Каким способом можно осуществить теплопередачу между телами, разделёнными безвоздушным пространством?
1) только с помощью теплопроводности
2) только с помощью конвекции
3) только с помощью излучения
4) всеми тремя способами
4. Благодаря каким видам теплопередачи в ясный летний день нагревается вода в водоёмах?
1) только теплопроводность
2) только конвекция
3) излучение и теплопроводность
4) конвекция и теплопроводность
5. Какой вид теплопередачи не сопровождается переносом вещества?
1) только теплопроводность
2) только конвекция
3) только излучение
4) только теплопроводность и излучение
6. Какой(-ие) из видов теплопередачи сопровождается(-ются) переносом вещества?
1) только теплопроводность
2) конвекция и теплопроводность
3) излучение и теплопроводность
4) только конвекция
7. В таблице приведены значения коэффициента, который характеризует скорость процесса теплопроводности вещества, для некоторых строительных материалов.
В условиях холодной зимы наименьшего дополнительного утепления при равной толщине стен требует дом из
1) газобетона
2) железобетона
3) силикатного кирпича
4) дерева
8. Стоящие на столе металлическую и пластмассовую кружки одинаковой вместимости одновременно заполнили горячей водой одинаковой температуры. В какой кружке быстрее остынет вода?
1) в металлической
2) в пластмассовой
3) одновременно
4) скорость остывания воды зависит от её температуры
9. Открытый сосуд заполнен водой. На каком рисунке правильно изображено направление конвекционных потоков при приведённой схеме нагревания?
10. Воду равной массы нагрели до одинаковой температуры и налили в две кастрюли, которые закрыли крышками и поставили в холодное место. Кастрюли совершенно одинаковы, кроме цвета внешней поверхности: одна из них чёрная, другая блестящая. Что произойдёт с температурой воды в кастрюлях через некоторое время, пока вода не остыла окончательно?
1) Температура воды не изменится ни в той, ни в другой кастрюле.
2) Температура воды понизится и в той, и в другой кастрюле на одно и то же число градусов.
3) Температура воды в блестящей кастрюле станет ниже, чем в чёрной.
4) Температура воды в чёрной кастрюле станет ниже, чем в блестящей.
11. Учитель провёл следующий опыт. Раскалённая плитка (1) размещалась напротив полой цилиндрической закрытой коробки (2), соединённой резиновой трубкой с коленом U-образного манометра (3). Первоначально жидкость в коленах находилась на одном уровне. Через некоторое время уровни жидкости в манометре изменились (см. рисунок).
Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.
1) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт излучения.
2) Передача энергии от плитки к коробке осуществлялась преимущественно за счёт конвекции.
3) В процессе передачи энергии давление воздуха в коробке увеличивалось.
4) Поверхности чёрного матового цвета по сравнению со светлыми блестящими поверхностями лучше поглощают энергию.
5) Разность уровней жидкости в коленах манометра зависит от температуры плитки.
12. Из перечня приведённых ниже высказываний выберите два правильных и запишите их номера в таблицу.
1) Внутреннюю энергию тела можно изменить только в процессе теплопередачи.
2) Внутренняя энергия тела равна сумме кинетической энергии движения молекул тела и потенциальной энергии их взаимодействия.
3) В процессе теплопроводности осуществляется передача энергии от одних частей тела к другим.
4) Нагревание воздуха в комнате от батарей парового отопления происходит, главным образом, благодаря излучению.
5) Стекло обладает лучшей теплопроводностью, чем металл.
Источник