За счет чего сверхновые типа ia позволили определить ускоренное расширение вселенной
Трое лауреатов, американцы Сол Перлмуттер, Брайан Шмидт и Адам Рисс, собрали доказательства того, что Вселенная расширяется с ускорением, наблюдая сверхновые типа Iа и используя их для измерения космологических расстояний.
Нобелевская премия по физике будет вручена космологам Солу Перлмуттеру (Saul Perlmutter), Брайану Шмидту (Brian Schmidt) и Адаму Риссу (Adam Riess), собравшим доказательства того, что Вселенная расширяется с ускорением.
Все лауреаты родились в США и обучались в американских университетах ( Гарвардском и Калифорнийском ). Стоит также отметить, что в 2006 году они уже получали престижную азиатскую Премию Шо с формулировкой, совпавшей с рескриптом Нобелевского комитета.
Сол Перлмуттер (родился в 1959 году), Адам Рисс (1969) и Брайан Шмидт (1967) на церемонии вручения Премии Шо (фото Wikimedia Commons). |
Гипотеза о том, что Вселенная расширяется, теоретически обоснована Александром Фридманом в начале ХХ века, а наблюдения Эдвина Хаббла, выполненные в конце двадцатых годов, стали её экспериментальным подтверждением. Чтобы оценить скорость расширения, астрономам нужно было найти какой-то класс объектов с известной светимостью («стандартных свечей»), которые можно использовать для измерения космологических расстояний. Самыми удобными и надёжными «свечами» оказались сверхновые типа Iа , вспыхивающие в тот момент, когда масса их предшественника — белого карлика — достигает хорошо известного предела Чандрасекара . Поскольку механизм взрыва универсален, все сверхновые типа Ia, находящиеся на одном расстоянии от нас, должны иметь примерно одинаковую светимость в максимуме, а наблюдаемая яркость вспышек, произошедших в разных галактиках, должна свидетельствовать о том, как сильно эти галактики удалены от Земли.
В конце прошлого века две исследовательские группы попытались составить массив экспериментальных данных по сверхновым типа Ia. Одна из них, Supernova Cosmology Project , приступила к работе в 1988-м, и руководил ею г-н Перлмуттер. Другая, возглавляемая Брайаном Шмидтом High-z Supernova Search Team , подключилась к исследованиям в 1994-м.
При обработке собранной информации учёные надеялись обнаружить замедляющееся расширение Вселенной. В получившей большую известность работе 1998 года, ведущим автором которой стал участник High-z Supernova Search Team Адам Рисс, было, однако, показано, что сверхновые типа Ia в галактиках, удаление которых определялось по закону Хаббла, имеют яркость ниже ожидаемой. Другими словами, расстояние до этих галактик, вычисленное по методу «стандартных свеч», превосходило дистанцию, рассчитанную по ранее установленному значению параметра Хаббла.
Отсюда следовало, что Вселенная расширяется с ускорением.
Этот неожиданный результат заставил космологов пересмотреть имеющиеся модели. Напомним: сейчас для объяснения ускоряющегося расширения Вселенной теоретики вводят понятие тёмной энергии .
Современные представления об эволюции Вселенной и соотношения материи, тёмной материи и тёмной энергии (иллюстрация The Royal Swedish Academy of Sciences). |
Подготовлено по материалам Нобелевского комитета .
Источник
Очень темные дела: как объяснить ускоренное расширение Вселенной
Природа темной энергии является предметом ожесточенных споров. Открытый чуть менее чем тридцать лет назад, невидимый компонент Вселенной все еще не получил единого объяснения. Пришло время разобраться: почему темная энергия вызывает столько проблем, и как ученые пытаются ее детектировать?
Форма вселенной
С хорошей степенью точности наша Вселенная пространственно-однородна и изотропна – она не содержит «особых» точек и направлений, относительно которых ее свойства меняются. Такое пространство создать непросто: необходимо поддерживать определенную плотность энергии всех входящих в нее компонентов.
Уже в 1980-х годах ученым была точно известна так называемая критическая плотность, обеспечивающая пространственно-плоскую Вселенную. Но полученные результаты измерения количества барионного вещества в галактических кластерах совместно с плотностью, которую мог обеспечить Большой взрыв, скорее указывали на низкую плотностью материи в пространстве.
Также о недостатке материи говорил возраст шаровых скоплений – весьма немолодых конгломератов звезд. Оказалось, что такие скопления родились как минимум 10 миллиардов лет назад: но при наблюдаемом количестве вещества после Большого взрыва расширение Вселенной должно было постепенно замедляться и в целом оценка ее возраста была меньше. Наш мир оказывался моложе, чем его составляющие.
Сверхновые типа Ia
Окончательно убедить ученых в необходимости поиска нового источника энергии во Вселенной смогли сверхновые типа Iа – звезды, жизненный цикл которых заканчивается вспышкой, настолько интенсивной, что ее возможно наблюдать на Земле.
Две команды ученых, Supernova Cosmology Project, руководителем которого был Сол Перлмуттер, и High-Z Supernova Research Team, возглавляемый Брайаном Шмидтом, предложили процедуру использования самых мощных телескопов в мире для изучения сверхновых.
Прорыв совершил Марк Филлипс, астроном, работающий в Чили: он предложил новый способ определения внутренней светимости сверхновых типа Ia, которая напрямую связана с расстоянием до небесного тела. С другой стороны, расстояние до некоторых из звезд можно было определить с помощью закона Хаббла, описывающего изменение длины волны излучаемых объектом фотонов вследствие расширения Вселенной.
Оказалось, что сверхновые в далеких галактиках гораздо более «бледные»: их светимость была сильно меньше предсказанной исходя из расстояния, рассчитанного по закону Хаббла. Иными словами, сверхновые должны были находится гораздо дальше: так ученые впервые предположили, что Вселенная не просто расширяется, а с некоторым ускорением.
Наблюдение далеких сверхновых типа Ia в одночасье перевернуло представление ученых о Вселенной. Исследования показали, что около 70 % плотности энергии составляет новый, неизвестный компонент с отрицательным давлением.
Термин «темная энергия» предложил позднее космолог Майкл Тeрнер, а перед учеными встала новая загадка: объяснить природу еe возникновения.
Можно ли объяснить ускоренное расширение Вселенной?
В настоящее время существуют три класса теорий, претендующих на роль темной энергии. Первый вариант постулирует наличие энергии у вакуума: по сути дела это стало возвращением к космологической постоянной, предложенной Эйнштейном для поддержания статической Вселенной. В новом варианте плотность вакуума одинакова во всем пространстве, но не исключается, что она могла меняться со временем.
Второй вариант, получивший название квинтэссенции, предложенный немецким физиком Кристофом Веттерихом, предполагает наличие нового поля – фактически, новых частиц, вносящих вклад в общую плотность Вселенной. Энергия таких частиц уже не только изменяется со временем, но и в пространстве: для того, чтобы сильные колебания плотности темной энергии отсутствовали, частицы должны быть достаточно легкими. В этом, пожалуй, состоит основная проблема квинтэссенции: предложенные варианты частиц, согласно основным принципам современной физики, не могут оказываться легкими, а наоборот, приобретать значительную массу, и на данный момент никаких указаний на этот сценарий не получено.
К третьему варианту относятся различные теории модифицированной гравитации, в которой взаимодействие между массивными объектами не подчиняется стандартным законам Общей теории относительности (ОТО). Существует великое множество модификаций гравитации, но к настоящему времени отклонения от ОТО в экспериментах не были обнаружены.
Темная энергия, несмотря на огромный вклад в состояние Вселенной, упорно «прячется» от наблюдателей, и изучаются лишь косвенные проявления ее свойств. Среди них основную роль играют барионные акустические осцилляции, анизотропия реликтового излучения и слабое гравитационное линзирование.
Барионные акустические осцилляции
Барионные акустические осцилляции, или, сокращенно, БАО – наблюдаемое периодическое изменение плотности обычного, барионного вещества на больших масштабах. В первоначальной, горячая космической плазме, состоявшей из барионов и фотонов, конкурировали два процесса: гравитационное притяжение, с одной стороны, и отталкивание за счет высвобождения энергии при реакциях между веществом и фотонами – с другой. Подобное «противостояние» приводило к акустическим колебаниями, подобно звуковым волнам в воздухе между областями с различной плотностью.
При остывании Вселенной в определенный момент произошла рекомбинация – отдельным частицам стало выгоднее образовывать атомы, а фотоны фактически стали «свободными» и отделились от вещества. При этом вследствие колебаний вещество успело разлететься на некоторое определенное расстояние, называемое звуковым горизонтом. Последствия наличия горизонта в настоящее время наблюдаются в распределении галактик во Вселенной.
Сам по себе звуковой горизонт – величина, предсказываемая космологически. Он напрямую зависит от параметра Хаббла, определяющего скорость расширения Вселенной, который в свою очередь определяется и параметрами темной энергии.
Реликтовое излучение
Микроволновое реликтовое излучение – дальний «отголосок» Большого взрыва, равномерно заполняющие Вселенную фотоны с практически одинаковой энергией. В настоящее время именно реликтовое излучение является основным источником ограничений на различные космологические модели.
Однако, с увеличением чувствительности инструментов было обнаружено, что реликтовое излучение анизотропно и имеет неоднородности – с каких-то направлений приходит несколько больше фотонов, чем с других. Такое различие в том числе также вызвано наличием неоднородностей в распределении вещества, и масштаб распределения «горячих» и «холодных» пятен на небе определяется свойствами темной энергии.
Слабое гравитационное линзирование
Еще один важный для исследования темной энергии эффект – гравитационное темное линзирование – состоит в отклонении пучков света в поле вещества. Линзирование одновременно позволяет изучать структуру Вселенной и её геометрию, то есть форму пространства-времени.
Существуют различные виды гравитационного линзирования, среди которых наиболее удобным для изучения темной энергии является слабое линзирование за счет отклонения света крупномасштабной структурой Вселенной – это приводит к размыванию изображений далеких галактик.
Темная энергия одновременно влияет как на свойства источника, например расстояние до него, так и на свойства искажающего картинку пространства. Поэтому слабое линзирование, с учетом постоянно обновляющихся астрономических данных, является вдвойне важным способом постановки ограничений на свойства темной энергии.
Темная энергия – по прежнему в тени
Подведем итоги, что же удалось узнать физикам за практически тридцатилетний стаж изучения темной энергии?
С большой точностью известно, что темная энергия обладает отрицательным давлением: более того, уравнение зависимости давления от плотности энергии определено с большой достоверностью, и такими свойствами не обладает ни одна другая известная нам среда.
Темная энергия пространственно-однородна, а ее вклад в плотность энергии стал доминирующим относительно недавно – около пяти миллиардом лет назад; при этом она влияет одновременно и на расстояния между объектами и на саму структуру Вселенной.
Различные космологические эксперименты позволяют изучать темную энергию, но в настоящее время ошибки измерения слишком велики, чтобы делать точные предсказания. Пока что ученые еще явно далеки от ответа на вопрос о природе темной энергии, которая многие миллиарды лет тайно управляет устройством Вселенной.
Источник
Ускоряющееся расширение Вселенной — Accelerating expansion of the universe
Категория
Астрономический портал
Наблюдения показывают , что расширение по Вселенной ускоряется, таким образом, что скорость , при которой далекой галактике отступает от наблюдателя непрерывно увеличивается со временем.
Ускоренное расширение было обнаружено в 1998 году двумя независимыми проектами, Проектом по космологии сверхновых звезд и группой по поиску сверхновых с высоким Z , которые оба использовали далекие сверхновые типа Ia для измерения ускорения. Идея заключалась в том, что, поскольку сверхновые типа Ia имеют почти такую же внутреннюю яркость ( стандартная свеча ), и поскольку объекты, находящиеся дальше, кажутся более тусклыми, мы можем использовать наблюдаемую яркость этих сверхновых, чтобы измерить расстояние до них. Затем расстояние можно сравнить с космологическим красным смещением сверхновой , которое измеряет, насколько Вселенная расширилась с момента возникновения сверхновой. Неожиданным результатом стало то, что объекты во Вселенной удаляются друг от друга с ускоренной скоростью. В то время космологи ожидали, что скорость удаления всегда будет замедляться из-за гравитационного притяжения материи во Вселенной. Три члена этих двух групп впоследствии были удостоены Нобелевских премий за свое открытие. Подтверждающие доказательства были найдены в барионных акустических колебаниях и при анализе скоплений галактик.
Считается, что ускоренное расширение Вселенной началось с тех пор, как Вселенная вступила в эру доминирования темной энергии примерно 4 миллиарда лет назад. В рамках общей теории относительности ускоренное расширение можно объяснить положительным значением космологической постоянной Λ , эквивалентным наличию положительной энергии вакуума , получившей название « темная энергия ». Хотя есть альтернативные возможные объяснения, описание, предполагающее темную энергию (положительное Λ ), используется в текущей стандартной модели космологии , которая также включает холодную темную материю (CDM) и известна как модель Lambda-CDM .
СОДЕРЖАНИЕ
Задний план
За десятилетия, прошедшие с момента обнаружения космического микроволнового фона (CMB) в 1965 году, модель Большого взрыва стала наиболее распространенной моделью, объясняющей эволюцию нашей Вселенной. Уравнение Фридмана определяет, как энергия Вселенной управляет ее расширением.
ЧАС 2 знак равно ( а ˙ а ) 2 знак равно 8 π грамм 3 ρ — κ c 2 а 2 <\ displaystyle H ^ <2>= <\ left (<\ frac <\ dot > > \ right)> ^ <2>= <\ frac <8 <\ pi>G> <3>> \ rho — <\ frac <<\ kappa>c ^ <2>> >>>
где κ представляет собой кривизну Вселенной , a ( t ) — масштабный фактор , ρ — полная плотность энергии Вселенной, а H — параметр Хаббла .
ρ c знак равно 3 ЧАС 2 8 π грамм <\ displaystyle \ rho _
Ω знак равно ρ ρ c <\ Displaystyle \ Omega = <\ гидроразрыва <\ rho><\ rho _
Затем мы можем переписать параметр Хаббла как
ЧАС ( а ) знак равно ЧАС 0 Ω k а — 2 + Ω м а — 3 + Ω р а — 4 + Ω D E а — 3 ( 1 + ш ) <\ displaystyle H (a) = H_ <0> <\ sqrt <<\ Omega _
где четыре предполагаемых в настоящее время вкладчика в плотность энергии Вселенной — кривизна , материя , излучение и темная энергия . Каждый из компонентов уменьшается с расширением Вселенной (увеличение масштабного фактора), за исключением, возможно, члена темной энергии. Именно значения этих космологических параметров используют физики для определения ускорения Вселенной.
Уравнение ускорения описывает эволюцию масштабного фактора во времени.
а ¨ а знак равно — 4 π грамм 3 ( ρ + 3 п c 2 ) <\ displaystyle <\ frac <\ ddot > > = — <\ frac <4 <\ pi>G> <3>> \ left (\ rho + <\ frac <3P>
где давление P определяется выбранной космологической моделью. (см. пояснительные модели ниже)
Одно время физики были настолько уверены в замедлении расширения Вселенной, что ввели так называемый параметр замедления q 0 . Текущие наблюдения показывают, что этот параметр замедления отрицательный.
Отношение к инфляции
Согласно теории космической инфляции , очень ранняя Вселенная пережила период очень быстрого квазиэкспоненциального расширения. Хотя временной масштаб для этого периода расширения был намного короче, чем у текущего расширения, это был период ускоренного расширения с некоторым сходством с текущей эпохой.
Техническое определение
Определение «ускорение расширения» является то , что вторая производная по времени космического масштабного коэффициента, является положительной, что эквивалентно параметром замедления , , будучи отрицательным. Однако обратите внимание, что это не означает, что параметр Хаббла увеличивается со временем. Поскольку параметр Хаббла определяется как , из определений следует, что производная параметра Хаббла определяется выражением а ¨ <\ Displaystyle <\ ddot <а>>> q <\ displaystyle q>
ЧАС ( т ) ≡ а ˙ ( т ) / а ( т ) <\ Displaystyle Н (т) \ экв <\ точка <а>> (т) / а (т)>
d ЧАС d т знак равно — ЧАС 2 ( 1 + q ) <\ displaystyle <\ frac
поэтому параметр Хаббла со временем уменьшается, если только . Предпочтение отдается наблюдению , что подразумевает, что положительно, но отрицательно. По сути, это означает, что космическая скорость удаления любой конкретной галактики увеличивается со временем, но ее соотношение скорость / расстояние все еще уменьшается; таким образом, различные галактики, расширяющиеся по сфере фиксированного радиуса, в более поздние времена пересекают сферу медленнее. q — 1 <\ displaystyle q q ≈ — 0,55 <\ displaystyle q \ приблизительно -0,55>
а ¨ <\ Displaystyle <\ ddot <а>>>
d ЧАС / d т <\ displaystyle dH / dt>
Как видно из выше , что в случае «нулевого ускорения / замедления» соответствует является линейной функцией , , , и . а ( т ) <\ Displaystyle а (т)> т <\ displaystyle t>
q знак равно 0 <\ displaystyle q = 0>
а ˙ знак равно c о п s т <\ displaystyle <\ dot > = const>
ЧАС ( т ) знак равно 1 / т <\ Displaystyle Н (т) = 1 / т>
Доказательства ускорения
Чтобы узнать о скорости расширения Вселенной, мы смотрим на соотношение звездных величин и красного смещения астрономических объектов с использованием стандартных свечей или на их соотношение расстояние-красное смещение с использованием стандартных линейок . Мы также можем посмотреть на рост крупномасштабной структуры и обнаружить, что наблюдаемые значения космологических параметров лучше всего описываются моделями, которые включают ускоряющееся расширение.
Наблюдение за сверхновой
В 1998 году первое свидетельство ускорения было получено при наблюдении сверхновых типа Ia , которые представляют собой взрывающиеся белые карлики , превысившие предел своей устойчивости . Поскольку все они имеют одинаковую массу, их собственная светимость может быть стандартизирована. Для обнаружения сверхновых используется повторное отображение выбранных областей неба, затем последующие наблюдения дают их пиковую яркость, которая конвертируется в величину, известную как расстояние светимости (подробности см. В разделе « Измерения расстояний в космологии» ). Спектральные линии их света можно использовать для определения их красного смещения .
Для сверхновых с красным смещением менее 0,1 или временем прохождения света менее 10 процентов возраста Вселенной это дает почти линейную зависимость между расстоянием и красным смещением в соответствии с законом Хаббла . На больших расстояниях, поскольку скорость расширения Вселенной менялась со временем, соотношение расстояние-красное смещение отклоняется от линейности, и это отклонение зависит от того, как скорость расширения изменялась с течением времени. Полный расчет требует компьютерного интегрирования уравнения Фридмана, но простой вывод можно дать следующим образом: красное смещение z напрямую дает космический масштабный коэффициент в момент взрыва сверхновой.
а ( т ) знак равно 1 1 + z <\ Displaystyle а (т) = <\ гидроразрыва <1><1 + z>>>
Таким образом, сверхновая с измеренным красным смещением z = 0,5 означает, что Вселенная была 1 / 1 + 0,5 знак равно 2 / 3 нынешнего размера, когда взорвалась сверхновая. В случае ускоренного расширения, положительное значение было меньше в прошлом, чем сегодня. Таким образом, ускоряющейся Вселенной потребовалось больше времени, чтобы расшириться от 2/3 до 1 раза от ее нынешнего размера, по сравнению с неускоряющейся Вселенной с постоянным и таким же современным значением постоянной Хаббла. Это приводит к большему времени прохождения света, большему расстоянию и более слабым сверхновым, что соответствует реальным наблюдениям. Адам Рисс и др. обнаружили, что «расстояния до SNe Ia с большим красным смещением были в среднем на 10–15% больше, чем ожидалось во Вселенной с низкой плотностью массы Ω M = 0,2 без космологической постоянной». Это означает, что измеренные расстояния с большим красным смещением были слишком большими по сравнению с ближайшими расстояниями для замедляющейся Вселенной. а ¨ <\ Displaystyle <\ ddot <а>>> а ˙ <\ displaystyle <\ dot >>
а ˙ <\ displaystyle <\ dot >>
Барионные акустические колебания
В ранней Вселенной до того, как произошла рекомбинация и разделение , фотоны и материя существовали в первичной плазме . Точки с более высокой плотностью в фотонно-барионной плазме сжимались под действием силы тяжести до тех пор, пока давление не становилось слишком большим, и они снова расширялись. Это сжатие и расширение создавало в плазме вибрации, аналогичные звуковым волнам . Поскольку темная материя взаимодействует только гравитационно, она остается в центре звуковой волны, источнике первоначальной сверхплотности. Когда произошло разделение, примерно через 380 000 лет после Большого взрыва, фотоны отделились от материи и смогли свободно течь через Вселенную, создавая космический микроволновый фон, каким мы его знаем. Это оставило оболочки барионной материи на фиксированном радиусе от сверхплотности темной материи, на расстоянии, известном как звуковой горизонт. Со временем, когда Вселенная расширилась, именно при этих анизотропии плотности материи начали формироваться галактики. Таким образом, глядя на расстояния, на которых галактики с разным красным смещением стремятся к скоплению, можно определить расстояние стандартного углового диаметра и использовать его для сравнения с расстояниями, предсказанными различными космологическими моделями.
Были обнаружены пики в корреляционной функции (вероятность того, что две галактики будут находиться на определенном расстоянии друг от друга) при 100 ч -1 Мпк (где h — безразмерная постоянная Хаббла ), что указывает на то, что это размер звукового горизонта сегодня, и сравнивая это со звуковым горизонтом во время разделения (используя CMB), мы можем подтвердить ускоренное расширение Вселенной.
Скопления галактик
Измерение функций масс скоплений галактик , которые описывают плотность скоплений выше пороговой массы, также свидетельствует о темной энергии. Путем сравнения этих массовых функций при больших и малых красных смещениях с предсказанными различными космологическими моделями, получены значения w и Ω m , которые подтверждают низкую плотность вещества и ненулевое количество темной энергии.
Возраст вселенной
Имея космологическую модель с определенными значениями космологических параметров плотности, можно интегрировать уравнения Фридмана и получить возраст Вселенной.
т 0 знак равно ∫ 0 1 d а а ˙ <\ displaystyle t_ <0>= \ int _ <0>^ <1> <\ frac
Сравнивая это с фактическими измеренными значениями космологических параметров, мы можем подтвердить справедливость модели, которая ускоряется сейчас и имела более медленное расширение в прошлом.
Гравитационные волны как стандартные сирены
Недавние открытия гравитационных волн с помощью LIGO и VIRGO не только подтвердили предсказания Эйнштейна, но и открыли новое окно во Вселенную. Эти гравитационные волны могут работать как стандартные сирены для измерения скорости расширения Вселенной. Abbot et al. В 2017 году значение постоянной Хаббла составило примерно 70 километров в секунду на мегапарсек. Амплитуды деформации h зависят от масс объектов, вызывающих волны, расстояния от точки наблюдения и частоты обнаружения гравитационных волн. Соответствующие меры расстояния зависят от космологических параметров, таких как постоянная Хаббла для близлежащих объектов, и будут зависеть от других космологических параметров, таких как плотность темной энергии, плотность материи и т. Д. Для удаленных источников.
Пояснительные модели
Темная энергия
Самым важным свойством темной энергии является то, что она имеет отрицательное давление (отталкивающее действие), которое относительно равномерно распределяется в пространстве.
п знак равно ш c 2 ρ <\ displaystyle P = wc ^ <2>\ rho>
где c — скорость света, а ρ — плотность энергии. Различные теории темной энергии предполагают разные значения w , причем w 1 / 3 для космического ускорения (это приводит к положительному значению ä в уравнении ускорения выше).
Самое простое объяснение темной энергии состоит в том, что это космологическая постоянная или энергия вакуума ; в этом случае w = −1 . Это приводит к модели лямбда-CDM , которая с 2003 года по настоящее время известна как Стандартная модель космологии, поскольку это простейшая модель, хорошо согласующаяся с множеством недавних наблюдений. Riess et al. обнаружили, что их результаты по наблюдениям сверхновых отдают предпочтение расширяющимся моделям с положительной космологической постоянной ( Ω λ > 0 ) и текущим ускоренным расширением ( q 0 ).
Фантомная энергия
Текущие наблюдения допускают возможность космологической модели, содержащей компонент темной энергии с уравнением состояния w . Эта фантомная плотность энергии станет бесконечной за конечное время, вызывая такое огромное гравитационное отталкивание, что Вселенная потеряет всю структуру и закончится Большим разрывом . Например, для w = — 3 / 2 и H 0 = 70 км · с −1 · Мпк −1 , время, оставшееся до того, как Вселенная закончится в этом Большом разломе, составляет 22 миллиарда лет.
Альтернативные теории
Есть много альтернативных объяснений ускоряющейся Вселенной. Некоторые примеры — квинтэссенция , предложенная форма темной энергии с непостоянным уравнением состояния, плотность которой со временем уменьшается. Отрицательная масса космология не предполагает , что плотность массы Вселенной положительна (как это сделано в наблюдениях сверхновых), и вместо этого находит отрицательную космологическую постоянную. Бритва Оккама также предполагает, что это «более экономная гипотеза». Темная жидкость — альтернативное объяснение ускоренного расширения, которое пытается объединить темную материю и темную энергию в единую структуру. В качестве альтернативы, некоторые авторы утверждали, что ускоренное расширение Вселенной может быть связано с отталкивающим гравитационным взаимодействием антивещества или отклонением законов гравитации от общей теории относительности, таких как массивная гравитация , что означает, что гравитоны сами имеют массу. Измерение скорости гравитации с помощью гравитационного волнового события GW170817 исключило многие модифицированные теории гравитации в качестве альтернативного объяснения темной энергии.
Другой тип модели, гипотеза обратной реакции, была предложена космологом Сикси Рясяненом: скорость расширения неоднородна, но мы находимся в области, где расширение происходит быстрее, чем фон. Неоднородности в ранней Вселенной вызывают образование стенок и пузырей, причем внутри пузыря содержится меньше вещества, чем в среднем. Согласно общей теории относительности, пространство менее искривлено, чем стены, и поэтому кажется, что оно имеет больший объем и более высокую скорость расширения. В более плотных областях расширение замедляется более сильным гравитационным притяжением. Следовательно, внутренний коллапс более плотных областей выглядит так же, как ускоренное расширение пузырьков, что приводит нас к выводу, что Вселенная подвергается ускоренному расширению. Преимущество в том, что для этого не требуется никакой новой физики, такой как темная энергия. Рясянен не считает эту модель вероятной, но без каких-либо фальсификаций она должна оставаться возможной. Для работы потребуются довольно большие колебания плотности (20%).
Последняя возможность состоит в том, что темная энергия — это иллюзия, вызванная некоторым смещением в измерениях. Например, если мы находимся в более пустой, чем в среднем, области пространства, наблюдаемая скорость космического расширения может быть ошибочно принята за изменение во времени или за ускорение. Другой подход использует космологическое расширение принципа эквивалентности, чтобы показать, как может казаться, что пространство расширяется быстрее в пустотах, окружающих наше локальное скопление. Будучи слабыми, такие эффекты, совокупно рассматриваемые в течение миллиардов лет, могут стать значительными, создавая иллюзию космического ускорения и создавая впечатление, будто мы живем в пузыре Хаббла . Еще одна возможность состоит в том, что ускоренное расширение Вселенной — это иллюзия, вызванная нашим относительным движением по отношению к остальной Вселенной, или что использованный размер выборки сверхновых не был достаточно большим.
Теории последствий для Вселенной
По мере расширения Вселенной плотность излучения и обычной темной материи снижается быстрее, чем плотность темной энергии (см. Уравнение состояния ), и, в конечном итоге, темная энергия доминирует. В частности, когда масштаб Вселенной удваивается, плотность материи уменьшается в 8 раз, но плотность темной энергии почти не меняется (она точно постоянна, если темная энергия является космологической постоянной ).
В моделях, где темная энергия является космологической постоянной, Вселенная будет экспоненциально расширяться со временем в далеком будущем, приближаясь к Вселенной де Ситтера . Это в конечном итоге приведет к исчезновению всех свидетельств Большого взрыва, поскольку космический микроволновый фон смещается в сторону более низких интенсивностей и длин волн. В конце концов, его частота станет достаточно низкой, чтобы он был поглощен межзвездной средой и, таким образом, был скрыт от любого наблюдателя в галактике. Это произойдет, когда возраст Вселенной будет меньше чем в 50 раз больше своего нынешнего возраста, что приведет к концу космологии в том виде, в каком мы ее знаем, поскольку далекая Вселенная потемнеет.
Постоянно расширяющаяся Вселенная с ненулевой космологической постоянной имеет плотность массы, уменьшающуюся со временем. В таком сценарии текущее понимание состоит в том, что вся материя будет ионизироваться и распадаться на изолированные стабильные частицы, такие как электроны и нейтрино , при этом все сложные структуры рассеиваются. Этот сценарий известен как « тепловая смерть Вселенной ».
Источник
➤ Adblockdetector