Меню

Закон удаления планет от солнца

Правило Тициуса-Боде и поиски пятой планеты

Таинственная история появления правила Тициуса-Боде и не менее таинственные совпадения связанные с этим событием.

Что такое правило Тициуса-Боде?

В 1766 году немец по имени Иоганн Тициус который успел попробовать себя в астрономии, физике и математике, на досуге вывел довольно любопытное правило, позволяющее, зная расстояние от Солнца до Земли, рассчитать и расстояние до других планет солнечной системы. Как бы то ни было, на “открытие” Тициуса никто особого внимания не обратил, тем более и сам Иоганн не претендовал на роль великого астронома, а его формула расчета работала без всякого теоретического обоснования и вообще, выглядела скорее остроумной шуткой, чем подлинным научным инструментом.

Иоганн Тициус – астроном, физик, математик. Автор «правила Тациуса-Боде» позволяющего достаточно точно высчитать расстояние между планетами солнечной системы

Однако в 1772 году к идее Тициуса обратился другой немецкий астроном Иоганн Боде – он-то и оказался “популяризатором” новой теории, представившим формулу своего коллеги и земляка широкой общественности. С тех нор формула называется правилом Тициуса-Боде. И, хотя с момента открытия правила прошло уже больше двух веков, специалисты занятые изучением звездного неба до сих пор не выработали четкой позиции как обращаться с “правилом” – как со случайным совпадением или… впрочем, пусть каждый решит это для себя самостоятельно!

Как работает правило Тициуса-Боде

Расстояние от Земли до Солнца составляет 149,6 млн. километров, однако так как орбита Земли не идеально круглая, мы можем смело округлить это расстояние до 150 млн.км. Именно 150 млн. км – то расстояние, что называется астрономической едини­цей (а.е.).

Что сделал Тациус? Он сочинил довольно несложную формулу, которую можно записать в таком виде:

Rn = 0.4+(0.3 x 2 n )

  • Rn – среднее расстояние от Солнца до планеты с порядковым номером n, в астрономических единицах.
  • n – число, порядковый номер планеты, причем Марсу соответствует 2, Земле 1 (т.е. 1 а.е.), Венере – 0, Меркурию – бесконечность и т.п.

Вот так всё просто (несмотря на наличии того факта, что счет начинается даже не с нуля, а бесконечности – двойного нуля!). Почему в формуле фигурируют числа 0,4 и 0,3? Сам Тициус приводил такое обоснование:

Если взять расстояние от Сатурна (последняя из известных в то время планет) до Солнца за 100 единиц, то получится любопытная математика. Меркурий будет находится на расстоянии 4 таких единиц (4+0=4). Венера будет расположена на расстоянии 7 единиц (4+3=7). Земля: 4+6 = 10 единиц, Марс: 4+12=16 единиц… вы заметили, что второе число в этой формуле постоянно удваивается? Вот и Тициус заметил, а потому продолжил счет.

После Марса по логике вещей должно было быть 4+24 = 28 единиц, но там планет не было… зато на расстоянии 4+48 = 52 единицы был Юпитер, а на расстоянии 4+96 = 100 единиц – Сатурн. Интересная арифметика, неправда ли?

Теперь проверим как работает выведенная Тициусом формула. Рассчитаем, например расстояние для Земли, уже хорошо нам известное.

0,4+(0,3 х 2 1 ) = 1 (а.е.)

Совпадение? Конечно совпадение, давайте рассчитаем расстояние для другой планеты, например для Марса?

0,4+(0,3 х 2 2 ) = 1,6 (а.е.), постойте, а сколько действительно астрономических единиц отделяет Марс от Солнца? 1,52 а.е., но при этом нельзя забывать – орбита Марса – это эллипс, поэтому 1,52 это усредненное значение. Снова совпадение? Тогда давайте сделаем полный расчет для солнечной системы и посмотрим что получится в итоге.

планеты n Действительное расстояние от Солнца, (а. е.) Расстояние от Солнца по правилу Тициуса — Воде, (а. е.) 1 Меркурий — 00 0,39 0,4 2 Венера 0 0,72 0,7 3 Земля 1 1,0 1,0 4 Марс 2 1,52 1,6 5 — 8 — 2,8 6 Юпитер 4 5,2 5,2 7 Сатурн 5 9,54 10,0 8 Уран 6 19,2 19,6 9 Нептун 7 30,07 38,8 10 Плутон 8 39,46

Планеты солнечной системы. Во время Тациуса, их было немного меньше

Откуда пошел миф о “пятой планете” и была ли она вообще?

К моменту публикации правила Тициуса-Боде ещё не были открыты Уран, Нептун и Плутон, поэтому данные приведенные в таблице сперва просто ошеломили научную общественность. Шутка вдруг стала приобретать какой-то мистический оттенок, особенно после того, как в 1781 году был открыт Уран, истинное положение которого (19,6 а.е.) почти соответствовало теоретическому (19,2 а.е.)!

И тут уже задумались многие научные светила – если “правило” точно (вернее почти точно) указывает на 7 известных планет, то… где та самая восьмая, а точнее пятая планета, предсказанная на расстоянии 2,8 а.е., между Марсом и Юпитером? Фактически, до этого момента никто и не обсуждал (и не предполагал) всерьез её наличие – ведь сразу после Марса шел Юпитер, и никаких признаков того, что между ними могло где-то вклинится ещё одно небесное тело не было. Фактически пресловутый миф о пятой планете (Фаэтоне) был “документально засвидетельствован” именно правилом Тициуса-Боде – других доказательств свидетельствующих о наличии ещё одного небесного тела в Солнечной системе, к концу 18-го века не существовало.

Читайте также:  Что это за шоу место под солнцем

Широкое обсуждение вопроса “пятой планеты” состоялось на Астрономическом конгрессе в 1790 году, однако никакой ясности в этом вопросе не было ещё долгих десять лет, пока в 1801 году астроном Джузеппе Пиацци не открыл астероид Цереру, расположенный на расстоянии… 2,8 астрономических единиц от Солнца.

Сравнение размеров астероида Церера и нашей Луны. Понятное дело, что до уровня планеты Церера не дотягивает

Правило Тициуса-Боде в ретроспективе

Открытие Цереры не стало триумфом правила Тициуса-Боде – несмотря на то, что этот астероид имел круглую форму и был довольно солидного диаметра (950 км), все-таки это была явно не планета. Да и времена пошли другие – научные методы требовали научного подхода, а не несложной формулы, половина значений в которую подставлялась словно “от балды”.

О правиле Тициуса-Боде стали постепенно забывать, и хотя по мере открытия других объектов пояса астероидов между Марсом и Юпитером, все чаще стала звучать версия о “погибшей пятой планете”, но из авторитетного источника, правило снова откочевало в стан “забавных идей” и околонаучных трюков.

Открытие в 1846 г. планеты Нептун вообще поставило на истории “правила” крест (вместо предсказанных 30 а.е., Нептун располагался в 38,8 а.е. от Солнца), а открытие Плутона в 1930 г. – жирную точку (39,46 а.е. вместо предсказанных 77,2 а.е.).

Впрочем, как уже говорилось: правило Тициуса-Боде — это не закон, подобный, например, законам Кеплера или Ньютона, а правило, полученное из анализа имеющихся данных о расстояниях известных планет от Солнца. Просто некое удивительное соотношение, мимо которого проходили долгое время.

А к любому правилу имеются свои отклонения – во всяком случае ничего не обычного в таких отклонениях нет, иногда они даже служат подтверждением правил.

Пояс астероидов разделяющий солнечную систему на внутреннюю и внешнюю части

К примеру, Плутон действительно не соответствует своему “месту” согласно правилу, но… ведь он расположен на расстоянии примерно соответствующем расстоянию указанному до Нептуна. А странное расстояние в 77 а.е. (т.е. очень далеко за орбитой Нептуна, на “задворках” Солнечной системы)… постойте, так ведь примерно здесь мы найдем Эриду (среднее расстояние 67,8 а.е., при разбросе 38-97 а.е.).

Пускай и Церера и Плутон и Эрида не являются “настоящими” планетами (а для здоровяка-Нептуна и вовсе не нашлось места), однако череда совпадений выглядит все равно довольно интересно. Мы одновременно не можем “верить” в работу правила Тициуса-Боде, но и однозначно “не верить” в него мы тоже не можем.

Возможно совпадения в результатах вычислений по правилу Тициуса-Боде это просто случайное совпадение, но возможно это и “частично работающий” механизм, часть элементов которого работает в наше время также как в незапамятные времена, а часть безвозвратно утрачена и “унесена рекой времени”. То есть правило показывает нам идеальную “теорию”, а нынешняя Солнечная система это – не идеальная “практика” с учетом всевозможных изменений и катаклизмов за миллиарды лет существования.

Менее мистическая, но от этого не более необычная теория гласит, что странные совпадения вызваны сочетанием особых условий орбитального резонанса небесных тел в более-менее стабильной планетной системе, на которую не действуют внешние факторы.

Если так и есть, то теоретически вообще любая планетная система должна более-менее соответствовать правилу Тициуса-Боде, а это в свою очередь, могло бы здорово помочь в открытии новых планет за пределами Солнечной системы. К сожалению, подтвердить или опровергнуть эту теорию мы пока тоже не можем – при всем совершенстве нынешней техники обнаружения экзопланет, наблюдение в далеких звездных системах планет размером с Меркурий или Марс (не говоря про карликовые планеты) нам недоступны.

Однако так будет не всегда, и возможно, спустя 300 лет с момента открытия, о загадочном правиле Тициуса-Боде вскоре заговорят вновь!

Александр Фролов,
в основе материала глава книги “Внуки Солнца”, В.С.Гетман.

Источник

Правило Тициуса-Боде: расстояния между планетами и Солнцем

Правило Тициуса-Боде (иногда называемое просто законом Боде) является гипотезой о том, что тела в некоторых орбитальных системах, включая Солнце, вращаются по полуосным осям в зависимости от планетарной последовательности. Формула предполагает, что, простираясь наружу, каждая планета будет примерно вдвое дальше от Солнца, чем предыдущая.

Читайте также:  Образ главного героя кладовая солнца

Гипотеза правильно предвосхитила орбиты Цереры (в поясе астероидов) и Урана, но потерпела неудачу в определении орбиты Нептуна и в конечном итоге была заменена теорией формирования Солнечной системы. Она названа в честь Иоганна Даниила Тициуса и Иоганна Элерта Боде.

Истоки

Первое упоминание о серии, приближающей закон Боде, можно найти в книге Дэвида Грегори «Элементы астрономии», опубликованной в 1715 году. В ней он говорит: «. предполагая, что расстояние от Солнца до Земли делится на десять равных частей, из них расстояние Меркурия будет около четырех, от Венеры семь, от Марса пятнадцать, от Юпитера пятьдесят два, и от Сатурна девяносто пять «. Подобное предложение, вероятно, вдохновленное Грегори, появляется в работе, опубликованной Кристианом Вольфом в 1724 году.

В 1764 году Чарльз Боннет в своей книге «Созерцание природы» сказал: «Мы знаем семнадцать планет, входящих в состав нашей Солнечной системы [то есть главных планет и их спутников], но мы не уверены, что их больше нет.» К этому в своем переводе работы Боннета в 1766 году Иоганн Даниэль Тициус добавил два своих собственных абзаца внизу страницы 7 и в начале страницы 8. Новый интерполированный абзац не найден в оригинальном тексте Боннета: ни в переводах работы на итальянский, ни английский языки.

Открытие Тициуса

В интеркалированном тексте Тициуса есть две части. Первая объясняет последовательность планетарных расстояний от Солнца. Также в ней есть пару слов о расстоянии от Солнца до Юпитера. Но этим текст не исчерпывается.

Стоит сказать пару слов о формуле правила Тициуса-Боде. Обратите внимание на расстояния между планетами и узнайте, что почти все они отделены друг от друга в пропорции, соответствующей их телесным величинам. Разделите расстояние от Солнца до Сатурна на 100 частей; затем Меркурий отделяется четырьмя такими частями от Солнца; Венера — на 4+3=7 таких частей; Земля — ​​на 4+6=10; Марс — на 4+12=16.

Но обратите внимание, что от Марса до Юпитера наступает отклонение от этой столь точной прогрессии. От Марса следует пространство 4+24=28 таких частей, но пока там не было обнаружено ни одной планеты. Но должен ли лорд-архитектор оставить это место пустым? Ни за что. Поэтому давайте предположим, что это пространство, без сомнения, принадлежит еще не обнаруженным спутникам Марса, добавим также, что, возможно, Юпитер все еще имеет вокруг себя несколько более мелких спутников, которые еще не были замечены каким-либо телескопом.

Восхождение Боде

В 1772 году Иоганн Элерт Боде в возрасте двадцати пяти лет завершил второе издание своего астрономического сборника Anleitung zur Kenntniss des gestirnten Himmels («Руководство по познанию звездного неба»), в который он добавил следующую сноску, первоначально не имеющую источников, но отмеченную в более поздних версиях. В мемуарах Боде можно найти ссылку на Тициуса с четким признанием его авторитета.

Мнение Боде

Вот как звучит правило Тициуса-Боде в изложении последнего: если расстояние от Солнца до Сатурна будет принято равным 100, тогда Меркурий отделен от Солнца четырьмя такими частями. Венера — 4+3=7. Земля — 4+6=10. Марс — 4+12=16.

Теперь в этой столь упорядоченной прогрессии есть пробел. После Марса следует пространство с исчислением 4+24=28, в котором еще не было замечено ни одной планеты. Можно ли верить, что Основатель вселенной оставил это пространство пустым? Конечно, нет. Отсюда мы подходим к расстоянию Юпитера в виде исчисления 4+48=52 и, наконец, к расстоянию Сатурна — 4+96=100.

Эти два утверждения относительно всей конкретной типологии и радиусов орбит, похоже, происходят от античной астрономии. Многие подобные теории были выведены еще до семнадцатого века.

Влияние

Тициус был учеником немецкого философа Кристиана Фрейхерра фон Вольфа (1679-1754). Вторая часть вставленного текста в работе Боннета основана на работе фон Вольфа от 1723 года, Vernünftige Gedanken von den Wirkungen der Natur.

Литература двадцатого века присваивает авторство правила Тициуса–Боде немецкому философу. Если это так, Тициус мог бы поучиться у него. Еще одна более старая ссылка была написана Джеймсом Грегори в 1702 году в его Astronomiae Physicae et geometryae Elementa, где последовательность планетарных расстояний 4, 7, 10, 16, 52 и 100 стала геометрической прогрессией отношения 2.

Читайте также:  За сутки земля делает полный оборот вокруг солнца

Это самая близкая формула Ньютона, которая также содержалась в трудах Бенджамина Мартина и Томаса Серда за годы до публикации в Германии книги Боннета.

Дальнейшая работа и практические последствия

Тициус и Боде надеялись, что закон приведет к открытию новых планет, и, действительно, открытие Урана и Цереры, расстояние между которыми хорошо согласуется с законом, способствовало его признанию научным миром.

Однако расстояние Нептуна было очень несоответствующим, и на самом деле Плутон — ныне не считающийся планетой — находится на среднем расстоянии, которое примерно соответствует закону Тициуса-Боде, предсказанному для следующей планеты вне Урана.

Первоначально опубликованный закон был приблизительно удовлетворен всеми известными планетами — Меркурием и Сатурном — с разрывом между четвертой и пятой планетами. Это было расценено как интересный, но не имевший большого значения показатель до открытия Урана в 1781 году, которое вписывается в серию.

Основываясь на этом открытии, Боде призвал к поиску пятой планеты. Церера, самый большой объект в поясе астероидов, была найдена в предсказанном положении Боде в 1801 году. Закон Боде был широко принят, пока Нептун не был обнаружен в 1846 году и не показал, что он не удовлетворяет закону.

Одновременно большое количество астероидов, обнаруженных в поясе, вычеркнуло Цереру из списка планет. Закон Боде был обсужден астрономом и логиком Чарльзом Сандерсом Пирсом в 1898 году, как пример ошибочных рассуждений.

Развитие проблемы

Открытие Плутона в 1930 году еще больше осложнило проблему. Несмотря на то, что оно не соответствовало положению, предсказанному законом Боде, оно было примерно в том положении, которое закон предсказал для Нептуна. Однако последующее открытие пояса Койпера и, в частности, объекта Эрида, который более массивен, чем Плутон, но не соответствует закону Боде, еще больше дискредитировал формулу.

Вклад Серды

Иезуит Томас Серда прочитал знаменитый курс астрономии в Барселоне в 1760 году на Королевской кафедре математики в колледже Сант-Жауме-де-Корделлес (Императорская и Королевская семинария знати Корделл). В «Тратадо» Сердаса появляются планетарные расстояния, полученные с помощью применения третьего закона Кеплера, с точностью 10–3.

Если взять за 10 расстояние от Земли и округлить до целого, геометрическая прогрессия [(Dn x 10) — 4] / [(Dn-1 x 10) — 4] = 2, от n = 2 до n = 8, может быть выраженной. И используя круговое равномерное фиктивное движение к аномалии Кеплера, значения Rn, соответствующие отношениям каждой планеты, могут быть получены как rn = (Rn — R1) / (Rn-1 — R1), в результате чего получается 1,82; 1,84; 1,86; 1.88 и 1.90, где rn = 2 — 0.02 (12 — n) — явное соотношение между кеплеровской преемственностью и законом Тициуса-Боде, что считается случайным численным совпадением. Результат исчисления близок к двум, но двойка вполне может рассматривать как округление числа 1,82.

Средняя скорость планеты от n = 1 до n = 8 уменьшает расстояние от Солнца и отличается от равномерного снижения при n = 2 для восстановления после n = 7 (орбитальный резонанс). Это влияет на расстояние от Солнца до Юпитера. Впрочем, расстояние между всеми остальными объектами в рамках пресловутого правила, которому посвящена статья, также определяется этой математической динамикой.

Теоретический аспект

Нет твердого теоретического объяснения, лежащего в основе правила Тициуса–Боде, но возможно, что при комбинации орбитального резонанса и нехватки степеней свободы, любая стабильная планетная система имеет высокую вероятность повторения той модели, которая описана в этой теории двух ученых.

Поскольку это может быть математическое совпадение, а не «закон природы», его иногда называют правилом, а не «законом». Тем не менее, астрофизик Алан Босс утверждает, что это просто совпадение, и планетарный научный журнал Icarus больше не принимает статьи, пытающиеся предоставить улучшенные версии «закона».

Орбитальный резонанс

Орбитальный резонанс от основных орбитальных тел создает области вокруг Солнца, которые не имеют долгосрочных стабильных орбит. Результаты моделирования формирования планет подтверждают идею о том, что случайно выбранная стабильная планетная система, вероятно, будет удовлетворять правилу Тициуса – Боде.

Дубрулле и Гранер

Дубрулле и Гранер показали, что степенные правила расстояний могут быть следствием моделей коллапсирующих облаков планетных систем, обладающих двумя симметриями: вращательной инвариантностью (облако и его содержимое осесимметричны) и масштабной инвариантностью (облако и его содержание выглядит одинаково во всех масштабах).

Последнее является особенностью многих явлений, которые, как считается, играют роль в формировании планет, таких как турбулентность. Расстояние от Солнца до планет Солнечной системы, предложенное Тициусом и Боде, не было пересмотрено в рамках исследований Дубрулле и Гранера.

Источник

Adblock
detector