Меню

Закон всемирного тяготения космос

Закон всемирного тяготения (в астрономии)

Что же за­ставляет планеты двигаться вокруг Солнца, почему они не разлетают­ся в разные стороны в безбрежные просторы Вселенной? Оказывается, управляет движением небесных тел закон всемирного тяготения, от­крытый И. Ньютоном (рис. 39) в 1682 г.

Закон всемирного тяготения: сила тяготения между двумя телами прямо пропорциональна произведению масс этих тел и обратно про­порциональна квадрату расстояния между ними.

Именно гравитация заставляет предметы падать на землю, удержи­вает нас на поверхности планеты, не отпускает Луну и искусственные спутники Земли в свободное плавание, а самой планете предписывает движение вокруг Солнца. Таким образом, научное обоснование эмпи­рических законов Кеплера дал выдающийся английский физик, мате­матик и астроном Исаак Ньютон, один из основоположников класси­ческой физики.

Идея о взаимном притяжении тел высказывалась и до Ньютона, однако только он сумел облечь за­кон в строгую математическую форму:

где F — сила тяготения; G — гра­витационная постоянная (6,67 • 10 -11 Н • м 2 /кг 2 ); m1, m2 — массы тел; r — расстояние между двумя телами.

Рис. 39. Исаак Ньютон
Рис. 40. Интерпретация закона всемирного тяготения
Рис. 41. Траектории движения спутника при различных скоростях: 1 — круговая; 2—3 — эллиптические; 4 — параболическая; 5 — гиперболи­ческая; 6 — орбита движения Луны

Кроме того, как бы мы ни ста­рались экспериментально обнару­жить взаимное тяготение даже до­вольно массивных тел, массами в сотни тонн, сделать это нам вряд ли удастся из-за незначительной величины действующей на них си­лы. Ньютон распространил закон на движение небесных тел, кото­рые, несмотря на большие рассто­яния, обладают гигантской массой и, следовательно, испытывают на себе действие больших сил гравитации (рис. 40). Материал с сайта http://doklad-referat.ru

На основе закона всемирного тяготения Ньютон дал строгую мате­матическую интерпретацию законов Кеплера. Он доказал, что под дей­ствием гравитации одно небесное тело может двигаться относительно другого по круговой, эллиптической, параболической или гиперболи­ческой орбитам (рис. 41). Применительно к запуску космического ко­рабля с поверхности Земли закон позволяет рассчитать начальные скорости, при которых этот корабль будет иметь различные траекто­рии дальнейшего движения.

Бу­дучи, безусловно, одним из умнейших людей своей эпохи, Ньютон тем не менее в преклонном возрасте стал жертвой финансовой аферы. Он приобрёл на крупную сумму ценные бумаги торговой компании. Вскоре финансовая пирамида рухнула, банк компании объявил себя банкротом. Ньютон потерял более 20 000 фунтов, после чего заявил: «Я могу рассчитать движение небесных тел, но не степень человече­ской непорядочности». Советуем и вам при принятии ответственных решений вспоминать это изречение Ньютона.

Источник

Закон всемирного тяготения Исаака Ньютона и гравитация

Как был открыт закон всемирного тяготения и почему Луна не падает на Землю.

Во вселенной существует всего одна сила, действие которой по-истине глобально и распространяется на все предметы – от мелких песчинок, до гигантских звезд. Это сила тяготения, сила гравитации.

Все знают историю про Исаака Ньютона и яблоко. Однако не все знают, что он пошел дальше и разобрался с Луной!

Закон всемирного тяготения был впервые сформулирован Исааком Ньютоном в 1666 году. Началось все с простого вопроса – почему Луна не падает на Землю (или не улетает от неё), в то время как яблоко, как высоко его не подбрасывай, в воздухе не зависнет. При этом, вполне очевидно, что Луна – штука гораздо более тяжелая, чем яблоко.

Ньютон провел довольно остроумный опыт. Нам известно, что на поверхности Земли, ускорение свободно падающего тела равно 9,81 м/с 2

При этом, учитывая, что наша планета имеет форму шара, ускорение 9,81 м/с 2 получается за 1 земной радиус (расстояние от центра планеты до поверхности).

Если же рассчитать, зная расстояние до Луны и период её обращения вокруг Земли, её ускорение, то мы получим значение меньше “яблочного” в 60 2 раз. Но ведь и Луна, находится от центра Земли в 60 раз дальше…

Наглядная иллюстрация разности ускорения.

“Совпадение” с цифрами показались Ньютону не случайными. Он предположил, что сила притяжения тела (в данном случае нашей планеты) не остается постоянной на удалении от него, а меняется обратно пропорционально квадрату расстояния до центра Земли. Короче говоря: чем больше расстояние – тем меньше сила притяжения.

Это предположение означало, что силу, которая удерживает Луну на ее орбите, можно рассматривать как силу притяжения Земли, ослабленную пропорционально отношению квадратов расстояний от центра Земли до Луны и от центра Земли до поверхности Земли.

Это, в свою очередь, позволило сформулировать и сам закон тяготения Ньютона: любые две частицы материи взаимно притягивают друг друга с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Математически закон записывается так:

Коэффициент G называется постоянной тяготения или гравитационной постоянной, её значение вычислено достаточно точно и составляет: 6,67⋅10 −11 м³/(кг·с²).

Тут может возникнуть вполне резонный вопрос: если гравитация есть у любого предмета, почему, к примеру, не притягиваются друг к другу камни, гайки, люди…. да даже металлические шарики, положи их рядом – не катятся друг к другу на встречу?

Ответ, конечно прост: вы посмотрите на значение гравитационной постоянной и вам станет очевидно, что сама по себе её величина ну очень мала. Настолько мала, что даже для таких крупных предметов как здания или горы её практически невозможно обнаружить и измерить – куда там людям или шарикам.

Другое дело – небесные тела вроде планет, звезд, галактик и т.п. Они обладают гигантскими массами, по порядку величины многократно превышающими численное значение G. Поэтому оказывается, что, несмотря на свою слабость, именно сила тяготения является главной, ведущей, управляющей движениями всех небесных тел. Именно закон тяготения описывает траектории движений планет и их спутников, а также звезд и даже звездных скоплений.

Читайте также:  Кто первым начал изучение космоса использовать телескоп

Наглядная схема разности гравитационных сил Земли и Луны. Наша планета изрядно «проминает» ткань пространства и не дает Луне убежать. Однако, чтобы совсем притянуть её к себе, сил не хватает. И слава богу!

Поскольку оказалось, что закон работает на огромных расстояниях от Земли, а значит, работал и миллиарды лет тому назад, закон тяготения принято называть законом всемирного тяготения, подчеркивая его всеобщность и фундаментальность в нашей Вселенной.

Считаю важным добавить: некоторые космологические модели предусматривают возможность медленного изменения гравитационной постоянной со временем, но на сегодняшний день экспериментально такое изменение достоверно не обнаружено, что позволяет считать G константой.

Открытие Исаака Ньютона позволило не только объяснить множественные “странности” в поведении массивных небесных тел: особенности в движении Луны, явление прецессии, приливы, сжатие газовых гигантов у полюсов, движения в системах двойных звезд, но также помогло «взвесить» Землю и другие планеты и даже предсказывать будущие открытия. Так, например, ещё в 1798 г. Пьер Лаплас фактически обосновал то явление, что мы сейчас называем “черной дырой”, рассчитав, что если некая звезда достигнет невероятной массы и плотности вещества, то её излучение не сможет уйти от неё и этот объект просто “исчезнет” для стороннего наблюдателя.

Источник

Определение и вывод закона всемирного тяготения

Тяготение – привычное явление для каждого живого существа на Земле, на первый взгляд, не требующее объяснений. Описывает это явление закон всемирного тяготения. Однако стоит углубиться в данную тему чуть больше, так сразу возникает ряд вопросов, для ответа на которые потребуются постулаты классической механики Ньютона, а также теории относительности и базирующейся на ней теории квантовой гравитации.

Что такое всемирное тяготение

Земля — это большой магнит, который притягивает к себе всё, что находится рядом: и карандаш, случайно выскользнувший из пальцев рук, и астероид, пролетающий мимо. С начала развития науки учёные давали своё видение и определение явлению всемирного тяготения, но только в 1687 году в фундаментальной работе Исаака Ньютона «Математические начала натуральной философии» было доказано его существование и воздействие на окружающие объекты.

Основываясь на известные к тому времени эмпирические соотношения Иоганна Кеплера, описывающие гелиоцентрическую картину мира, Ньютон определил закон, согласно которому все тела притягиваются друг к другу.

Причём сила взаимодействия растёт с увеличением массы и в то же время связана с расстоянием между объектами обратной квадратичной зависимостью, т.е.:

Несмотря на то, что объектами относительно небольшой массы данное явление практически не воспринимается, именно гравитация управляет движением астрономических тел, а формулировка закона позволяет объяснить, почему планеты движутся вокруг Солнца, а Луна – вокруг Земли.

Природа силы всемирного тяготения

Если важная роль гравитации в работе Вселенной понятна и неоспорима, то дать чёткий ответ на вопрос, откуда эта сила появляется, гораздо сложнее. В первой половине XX века Альберт Эйнштейн предложил специальную и общую теории относительности, в которых раскрыл своё видение природы всемирного тяготения. Согласно учёному, пространство и время представляют собой пространственно-временной континуум – четырёхмерное пространство, одно из измерений которого – время. Но так как люди воспринимают окружающее их пространство и течение времени в отдельности друг от друга, то они видят лишь проекцию континуума. Эйнштейн предположил, что гравитация возникает вследствие того, что тела, обладающие массой, вызывают деформацию пространства при проецировании на него четырёхмерного континуума.

Более понятной идея учёного будет выглядеть, если проиллюстрировать её с помощью двух шаров разной массы и обычного листа бумаги. Допустим, что лист держат за края в горизонтальном положении, а в его центр помещают один из шаров, более тяжёлый. Естественно, бумага прогнётся. Покатив по прямой линии лёгкий шарик, наблюдатель обнаружит, что его траектория является дугообразной, стремящейся к первому, более тяжёлому шару. Причём, с позиции шара меньшей массы, его движение продолжает быть прямолинейным. В этой иллюстрации и заключено упрощённое видение возникновения гравитации как явления.

История открытия закона всемирного тяготения

Существует легенда, согласно которой Ньютон, прогуливаясь по саду и наблюдая за луной, увидел, как падает на землю яблоко (в другой версии, это яблоко упало на голову учёного). В этот же момент он подумал, что, есть вероятность, что одна и та же сила удерживает спутник на небе и заставляет фрукты падать с веток деревьев. Эта догадка и послужила началом работы над законом притяжения.

Сегодня историки сомневаются в этом мифе, что вполне объяснимо, однако главным фактом в истории остаётся то, что Ньютон был первым учёным, который осознал, что тела на Земле и в космосе испытывают на себе воздействие одной и той же силы. До этого момента люди делили гравитацию на два типа: первый отвечал за земное, несовершенное взаимодействие, второй – за небесное, заставляющее планеты двигаться по круговым, совершенным, траекториям.

Ньютон математически связал гравитацию и соотношения движения планет, выведенные Кеплером, прекращая тем самым ложное разделение физических устоев Земли и остальной Вселенной.

Вывод закона всемирного тяготения

Исаак Ньютон описал свою математическую модель гравитационного воздействия, рассматривая движение Луны вокруг Земли.

Читайте также:  Космос холмогоров с машиной

Притяжение тел к земле

Известно, что радиус Земли составляет RЗ = 6370 километров, а всякий объект на её поверхности, обладает ускорением свободного падения g = 9,81 м/с 2 .

Притяжение Земли и Луны

Известно, что Луна вращается вокруг Земли, двигаясь по круговой орбите радиусом RЛ = 384000 километров, период обращения при этом равен T = 27,3 суток. Для того чтобы численно прикинуть, насколько орбита Луны больше радиуса Земли, требуется разделить имеющиеся величины друг на друга, то есть:

По полученным результатам очевидно, что путь от планеты до спутника включает в себя 60 радиусов Земли.

Ускорение в формуле всемирного тяготения

Луна притягивается к ней с ускорением, которое называют центростремительным. Известно, что центростремительное ускорение находят по формуле:

где ω – угловая скорость движения;

R – радиус окружности, по которой происходит движение.

Угловая скорость ω и период обращения Т связаны между собой соотношением:

Подставляя это равенство в формулу ускорения и преобразуя её путём подстановки индексов к некоторым величинам, получаем:

где aЛ – ускорение Луны;

RЛ – орбита Луны или расстояние от неё до Земли.

Перед тем, как получить численное значение искомого ускорения, требуется перевести размерности всех компонентов в соответствии с Международной системой единиц (СИ):

  • период Т = 27,3 суток = 655,2 часа = 39312 минут = 2358720 секунд;
  • расстояние R = 384000 километров = 384 ∙10 6 метров.

Таким образом, спутник движется с ускорением:

aЛ = (2∙3,14 / 2358720) 2 ∙ 384 ∙10 6 = 2,72∙10 -3 м/с 2 .

Сравнивая полученную величину со значением g, получаем:

g/ aЛ = 9,81 / 2,72∙10 -3 ≈ 3600 = 60 2 .

То есть ускорение, получаемое на орбите Луны, в 60 2 раз меньше ускорения, которое приобретается на поверхности Земли, при этом спутник находится в 60 раз дальше, то есть напрашивается предположение, согласно которому ускорение обратно пропорционально значению расстояния, возведённому в квадрат:

Второй и третий законы Ньютона в выводе формулы тяготения

Второй закон Ньютона утверждает, что ускорение a, которое получает тело, прямо пропорционально зависит от равнодействующей сил F, которые приложены к этому телу, и находится в обратной зависимости от его массы m:

Исходя из этого, напрашивается утверждение, что характер приращения силы идентичен характеру приращения ускорения, то есть:

А так как уже было выдвинуто предположение, что ускорение имеет обратно пропорциональную зависимость от квадрата расстояния, то у силы, действующей на тело, такой же характер, то есть:

В это же время известно, что по третьему закону Ньютона взаимодействие тел между собой становится причиной возникновения сил, направленных в противоположные стороны, но одинаковых по модулю:

где F12 – сила, с которой первое тело воздействует на второе;

F21 – сила, действия второго тела на первое.

Таким образом, не только Земля притягивает к себе свой спутник, но и наоборот. А так как по второму закону Ньютона приращение силы прямо зависит не только от приращения ускорения, но и массы, то можно утверждать, что притяжение между Луной и Землёй соответствует записи:

где mЛ – масса Луны;

Знак умножения здесь получен в результате конъюнкции – логической операции, синонимами которой являются «логическое умножение» и «И» (потому что на притяжение влияет и масса Луны, и масса Земли).

Формула всемирного тяготения

Суммируя полученные вычисления и предположения, можно вывести запись:

Но так как данное соотношение действует не только на нашу планету и её спутник, а на все объекты, то полученный вид следует слегка преобразовать:

где F – сила притяжения, возникающая при взаимодействии двух тел;

m1,2 – масса первого и второго тела;

Для того чтобы пропорциональность стала равенством, требуется специальный коэффициент G, называемый гравитационной постоянной. После его введения итог совершённых преобразований получает название формулы закона всемирного тяготения:

В чём измеряется сила притяжения

В СИ размерность любой силы — это ньютоны (Н), следовательно, сила притяжения измеряется в тех же величинах. Ньютоны считаются производными единицами, которые формируются установленными основными. Таким образом, ньютон это отношение килограмма (кг) к отношению метра (м) на секунду в квадрате (с 2 ), то есть Н = кг / (м/с 2 ) .

Гравитационная постоянная

Значение постоянной G приравнивается силе притяжения двух точечных тел, обладающих массой один килограмм и расположенных в одном метре. Согласно СИ,

G = 6,67∙10 -11 Н∙м²·кг −2 .

Опыт Кавендиша

Чтобы определить гравитационную постоянную, был проведён эксперимент, где главную роль играли крутильные весы – устройства, представляющего собой прочную стальную проволоку, на которой расположено горизонтальное коромысло, утяжелённое по краям двумя одинаковыми шарами из свинца. Масса каждого составляла 730 грамм.

В ходе эксперимента Кавендиш приближал к маленьким шарикам большие, весом 158 килограмм, подвешенные также на коромысле. При подведении тяжёлых шаров возникала сила взаимного притяжения, поворачивающая коромысло и закручивающая проволоку, что вызывало появление силы упругости, противодействующей притяжению шаров. В определённый момент сила гравитационного взаимодействия уравновешивалась с силой упругости закрученной проволоки. Регистрируя оптическими устройствами отклонения шаров и сравнивая силы, действующие на систему, Кавендиш вычислил значение коэффициента.

Инфографика-вывод закона всемирного тяготения

Сила тяжести как частный случай закона всемирного тяготения

Создав математическую модель притяжения, Ньютон установил, что сила тяжести, чьё влияние видел и испытывал на себе каждый, является лишь одним из проявлений всемирного тяготения, которое утверждает, что все тела во Вселенной, включая планеты, звёзды, астероиды и т.д., воздействуют друг на друга с определённой силой.

Чтобы узнать значение этой силы, исходящей от Земли, нужно воспользоваться формулой, выражающей прямо пропорциональную зависимость воздействия и массы объекта:

Читайте также:  Научное сочинение про космос

На поверхности значение ускорения свободного падения принимают равным 9,81 м/с 2 . Если же тело удалено от поверхности Земли, значение g можно найти по формуле:

где h – расстояние до земли.

Таким образом, действие силы тяжести на тело уменьшается с увеличением высоты.

Интересный факт: если принять силу тяжести, действующую на Земле, за единицу, то можно проанализировать значение притяжения на поверхности других небесных тел. Так, самое большое воздествие тяготения испытает на себе тело на поверхности Юпитера – 2,442, а самое маленькое – на Луне (0,165).

В каких случаях справедлив закон всемирного тяготения

Выявленная Ньютоном зависимость имеет ограничения в области применения. Так, закон справедлив только в случаях, когда:

  1. тела можно принять материальными точками, то есть их размеры настолько малы по отношению к расстоянию, что ими можно пренебречь;
  2. тела обладают сферической формой, что свидетельствует об однородном распределении массы внутри них;
  3. одно из тел – шар большого диаметра, а второе имеет несопоставимо маленькие размеры.

Соотношение неприменимо, если требуется описать взаимодействие шара и стержня бесконечной длины. В этом случае сила притяжения будет пропорциональна не квадрату расстоянию, а его модулю. А если существует потребность определить тяготение между бесконечной плоскостью и телом, расстояние вообще не будет иметь влияния.

Применение закона всемирного тяготения

Закон всемирного тяготения – это фундаментальный закон механики, после формулировки которого стало возможно объяснение и предсказание множества природных явлений. К ним относятся:

  • приливы и отливы;
  • точное время и место лунных и солнечных затмений;
  • масса Солнца и других астрономических тел;
  • орбиты движения планет и их спутников.

Открытие планет с использованием закона всемирного тяготения

После открытия явления притяжения астрономы и физики могли, опираясь на закон Ньютона и соотношения Кеплера, определять траектории движения наблюдаемых планет Солнечной системы и указывать их координаты в любой момент времени, причём правильность вычислений подтверждалась эмпирически – результатами астрономических наблюдений.

В 1781 году Уильямом Гершелем была открыта седьмая планета Солнечной системы – Уран. Следуя отработанному алгоритму, астроном рассчитал траекторию своего открытия и его орбиту, однако в первой половине XIX века учёные обнаружили несоответствие вычисленных и реальных координат. Возникло предположение, что, помимо Солнца и шести других планет, на Уран воздействует ещё одна планета, находящаяся за ним.

В 1846 году ночью 23 сентября на основании теоретических расчётов, выполненных по имеющимся отклонениям Урана от рассчитанной траектории, молодым сотрудником Британской обсерватории Иоганном Галле была обнаружена предсказанная планета, названная Нептуном.

Интересный факт: расчёты, после проведения которых стало возможно открытие, в одно и то же время совершили два учёных, независимо друг от друга – Джон Адамс и Урбен Леверье.

Спустя практически 100 лет, 18 февраля 1930 года, подобным образом была открыта девятая планета – Плутон, которая из-за относительно небольших размеров и массы считается карликовой.

Закон всемирного тяготения. Примеры из жизни

Притяжение испытывает на себе любой объект во Вселенной. В обычной жизни действие этого закона можно наблюдать в каждом явлении падения тел с высоты, будь то листок с дерева, камень, капли дождя, горные обвалы и оползни.

Кроме этого, тяготение проявляется в наличии веса у каждого объекта – силы, с которой тело воздействует на опору, препятствующую его дальнейшему падению к центру Земли.

Границы применимости

Несмотря на то, что закон всемирного тяготения Ньютона объясняет работу множества явлений, в конце XIX века было выявлено несоответствие наблюдаемого и рассчитанного смещения перигелия Меркурия. Эта особенность движения планеты не объяснялась известным законом, что потребовало новое понимание гравитации.

Кроме того, на рубеже веков применимость классической механики, основанной на законах Ньютона, подверглась ограничениям. Получение точных результатов с её помощью возможно только в случаях, когда:

  • скорость тел гораздо меньше скорости звука;
  • размеры объектов гораздо больше размеров атомов и молекул;
  • скорость распространения гравитации считается бесконечной.

Дальнейшее развитие

С момента создания теории притяжения многие учёные, не разделявшие научных взглядов Ньютона, стремились усовершенствовать его закон. А возникновение трудностей XIX века, подвергших сомнению основы, потребовало внесение коррективов, которые могли бы объяснить расхождение наблюдаемого и рассчитанного. В 1915 году Альберт Эйнштейн создал общую теорию относительности (ОТО), которая объяснила смещение перигелия Меркурия и сегодня является самой перспективной теорией гравитации, доказанной множеством экспериментов.

ОТО имеет чётко выраженные границы применимости, что выражается, например, в невозможности её применения при рассмотрении квантовых эффектов. Поэтому потребовалась новая теория, в которой уже сегодня стремятся объединить теорию относительности Эйнштейна и квантовую механику. Две указанные теории основываются на различных наборах постулатов, но, несмотря на это, квантовая гравитация – одно из основных и перспективных направлений для физических исследований.

Выводы

Все тела во Вселенной взаимно притягиваются, это явление называется гравитацией. Сила притяжения, которая действует между двумя объектами, тем больше, чем больше их массы, в то же время тяготение уменьшается с увеличением расстояния.

После прочтения данной статьи ответ на вопрос, как формулируется закон всемирного тяготения, обязательно будет быстрым и правильным. Однако важно не забывать, что формула, описанная Ньютоном, справедлива только для конкретно описанных случаев.

Более того, несмотря на существование и подтверждение новых гипотез, ньютоновская механика, включая закон всемирного тяготения, является наиболее простой из существующих теорий и верно описывает природные явления в своих границах.

Источник

Adblock
detector