Меню

Земле не убежать от солнца

Земле не убежать от солнца

Земле не убежать от Солнца

В сентябре прошлого года в британском журнале Nature была опубликована статья итальянского астронома Роберто Сильвотти и его коллег, в которой описывался пример того, как планета может пережить предсмертное распухание своего солнца. Забрезжила надежда, что подобным образом и Земля способна избежать гибели. Однако новая работа мексиканских и британских астрономов показывает, что этот вариант для нас вряд ли реализуется: чтобы сбежать от Солнца – красного гиганта – орбита Земли должна быть как минимум на 15% шире, чем она есть.

Планета в системе V391 Пегаса, о которой речь шла в сентябрьской статье, смогла избежать поглощения внешними слоями звезды благодаря тому, что перешла на более далёкую орбиту. Причина такой миграции очень проста – звезда на поздних этапах эволюции интенсивно теряет массу, и её притяжение ослабевает, а из-за этого радиус планетной орбиты понемногу увеличивается. Если всё происходит достаточно медленно, то орбита даже остаётся более или менее круглой.

Подобное происходит и в нашей планетной системе. По самой знаменитой формуле Альберта Эйнштейна E=mc 2 излучение энергии с поверхности Солнца приводит к медленной потере массы. Медленной, конечно, лишь по астрономическим масштабам – ежесекундно Солнце «худеет» на 4,5 миллиона тонн лишь за счёт излучения света. А есть ещё нейтрино, покидающие термоядерную топку в центре светила, не замечая его внешних слоёв, а также протуберанцы и заряженные частицы, ускоряемые солнечными вспышками. И всё-таки несколько миллионов тонн для Солнца, масса которого составляет 2*10 27 тонн – не так много. Орбита Земли из-за такой потери массы расширяется примерно на сантиметр в год.

Масштабы «похудания» становятся совершенно иными на поздних стадиях эволюции звёзд.

Все звёзды проводят большую часть своей активной жизни, черпая энергию из реакций термоядерного синтеза по превращению водорода в гелий. Для таких реакций нужны чудовищные температура и давление, поэтому идут они лишь в самом центре звезды. Запасов ядерного топлива хватает на миллионы лет и миллиарды лет – парадоксально, но дольше живут именно маленькие звёзды, поскольку большие слишком ярко светят, буквально не жалея себя.

Однако рано или поздно топливо кончается, и звезда, лишившись поддержки источника энергии в своём центре, чуть сжимается и разогревается. «Загорается» так называемый слоевой источник – область вокруг центра звезды, в которой водород ещё остался, в отличие от самого центра, куда, будучи более тяжелыми, опускаются ядра гелия. Энергия здесь производится совсем не в тех количествах, что прежде, поэтому внутренняя структура звезды перестраивается, а её внешние слои многократно увеличиваются в размерах. Звезда становится чуть холоднее, из-за чего становится красной, однако громадные размеры заставляют её светиться в тысячи раз ярче, чем прежде – наступает стадия красного гиганта.

Наивные расчёты показывают, что Солнце, превратившись в красного гиганта, увеличится в размерах более чем двухсоткратно, поглотив при этом и Меркурий с Венерой, и Землю, и даже Марс. Учёт потери массы на стадии красного гиганта, а также следующей за ней фазе асимптотической ветви гигантов, и соответствующее расширение орбит планет сохраняют Марс нетронутым. Однако судьба Земли – наверное, самой интересной для нас планеты – остаётся всё ещё спорной; разные модели предсказывают то поглощение нашей родины, то благополучный исход – впрочем, лишь для самой планеты, а не биосферы на её раскалённой огромным близким светилом поверхности.

По мнению Клауса-Питера Шрёдера и Роберта Смита, правы, увы, первые модели. Работа учёных принята к публикации в Monthly Notices of the Royal Astronomical Society. Шрёдеру и Смиту, воспользовавшихся самыми точными на сегодняшний момент моделями, откалиброванными на наблюдениях множества реально существующих звёзд, впервые удалось подробно учесть не только расширение орбит из-за потери массы, но и обратное влияние планеты на поверхность светила.

И именно это взаимодействие обрекает Землю на исчезновение в горячем теле нашего светила.

Дело в том, что на внешние слои будет действовать земное притяжение, которое вызовет на поверхности небольшую приливную волну. Приливные волны всегда немного отстают от тех светил, что их вызывают – широко известно, что на Земле максимальные приливы даже в сизигиях (когда Солнце и Луна находятся на одной линии относительно Земли) слегка отстают от момента, когда Луна максимально высоко поднимается над поверхностью в данном месте планеты.

Отставание крохотных приливных горбов, которые уже Земля образует на Солнце, приведёт к тому, что их притяжение будет, в свою очередь, чуть притормаживать движение Земли по орбите, из-за чего даже потеря массы не позволит нашей планете убежать от распухшего Солнца. Внесёт свой вклад и трение о внешние, разреженные области хромосферы светила.

Детальные расчёты показывают, что выжить Земля могла бы лишь в случае, если её сегодняшняя орбита была бы всего на 15% шире. А Земле на её нынешнем удалении от Солнца неизбежно светит оказаться внутри его распухших внешних слоёв.

Впрочем, произойдёт это не скоро – от печального конца планету отделяют ещё 7,59 миллиардов лет.

К тому моменту Солнце будет на треть легче, чем сейчас. Это обстоятельство также позволило авторам представить, как будет выглядеть наше светило по окончании своей жизни. По их расчётам, следующая за стадией красного гиганта фаза жизни – а скорее, даже гибели – Солнца (она называется стадия асимптотической ветви гигантов) будет достаточно скромной. Через 150 миллионов лет после максимального распухания светило вновь распухнет, однако, в отличие от большинства звёзд, не достигнет максимальных размеров на предыдущей стадии.

Читайте также:  Сколько лет будет солнце активно

Кроме того, оно не сможет произвести достаточно сильного пылевого звёздного ветра, чтобы разогнать внешние слои звезды, превратив её в классическую планетарную туманность. После гибели Солнца и Земли на месте системы останется лишь околозвёздная оболочка массой в несколько процентов солнечной, в центре которой будет находиться белый карлик. Отсутствие планетарной туманности вокруг этой крохотной звезды делает финальную картину ещё более безрадостной, чем та, что так опечалила президента России Владимира Путина весной прошлого года.

Copyright © «Динозавры и история жизни на Земле» 2005-2021

Источник

LiveInternetLiveInternet

Метки

Рубрики

  • фото (158)
  • Slash & Yaoi Foto (59)
  • Полезно, пригодится (57)
  • Юмор (56)
  • +Dark+ (36)
  • Архитектура, Искусство (36)
  • +Rock, Metal, Gothic+ (34)
  • Культура, философия, религии (34)
  • Slash & Yaoi Video (33)
  • видео (30)
  • фанфики & заметки (гомо!) (16)
  • Мистическое и загадочное (10)
  • Колесо истории (6)
  • Стихи (4)

Музыка

Подписка по e-mail

Поиск по дневнику

Статистика

Земле не убежать от Солнца

Земля обречена. Появившиеся в сентябре прошлого года надежды на то, что планета сможет избежать поглощения Солнцем, удалившись от него, не оправдались. Детальные расчёты показывают, что Солнце всё-таки поглотит Землю, и причиной этого станет влияние самой планеты на внешние слои светила.

В сентябре прошлого года в британском журнале Nature была опубликована статья итальянского астронома Роберто Сильвотти и его коллег, в которой описывался пример того, как планета может пережить предсмертное распухание своего солнца. Забрезжила надежда, что подобным образом и Земля способна избежать гибели. Однако новая работа мексиканских и британских астрономов показывает, что этот вариант для нас вряд ли реализуется: чтобы сбежать от Солнца – красного гиганта – орбита Земли должна быть как минимум на 15% шире, чем она есть.

Планета в системе V391 Пегаса, о которой речь шла в сентябрьской статье, смогла избежать поглощения внешними слоями звезды благодаря тому, что перешла на более далёкую орбиту. Причина такой миграции очень проста – звезда на поздних этапах эволюции интенсивно теряет массу, и её притяжение ослабевает, а из-за этого радиус планетной орбиты понемногу увеличивается. Если всё происходит достаточно медленно, то орбита даже остаётся более или менее круглой.

Подобное происходит и в нашей планетной системе. По самой знаменитой формуле Альберта Эйнштейна E=mc 2 излучение энергии с поверхности Солнца приводит к медленной потере массы. Медленной, конечно, лишь по астрономическим масштабам – ежесекундно Солнце «худеет» на 4,5 миллиона тонн лишь за счёт излучения света. А есть ещё нейтрино, покидающие термоядерную топку в центре светила, не замечая его внешних слоёв, а также протуберанцы и заряженные частицы, ускоряемые солнечными вспышками. И всё-таки несколько миллионов тонн для Солнца, масса которого составляет 2*10 27 тонн – не так много. Орбита Земли из-за такой потери массы расширяется примерно на сантиметр в год.

Масштабы «похудания» становятся совершенно иными на поздних стадиях эволюции звёзд.

Все звёзды проводят большую часть своей активной жизни, черпая энергию из реакций термоядерного синтеза по превращению водорода в гелий. Для таких реакций нужны чудовищные температура и давление, поэтому идут они лишь в самом центре звезды. Запасов ядерного топлива хватает на миллионы лет и миллиарды лет – парадоксально, но дольше живут именно маленькие звёзды, поскольку большие слишком ярко светят, буквально не жалея себя.

Однако рано или поздно топливо кончается, и звезда, лишившись поддержки источника энергии в своём центре, чуть сжимается и разогревается. «Загорается» так называемый слоевой источник – область вокруг центра звезды, в которой водород ещё остался, в отличие от самого центра, куда, будучи более тяжелыми, опускаются ядра гелия. Энергия здесь производится совсем не в тех количествах, что прежде, поэтому внутренняя структура звезды перестраивается, а её внешние слои многократно увеличиваются в размерах. Звезда становится чуть холоднее, из-за чего становится красной, однако громадные размеры заставляют её светиться в тысячи раз ярче, чем прежде – наступает стадия красного гиганта.

Наивные расчёты показывают, что Солнце, превратившись в красного гиганта, увеличится в размерах более чем двухсоткратно, поглотив при этом и Меркурий с Венерой, и Землю, и даже Марс. Учёт потери массы на стадии красного гиганта, а также следующей за ней фазе асимптотической ветви гигантов, и соответствующее расширение орбит планет сохраняют Марс нетронутым. Однако судьба Земли – наверное, самой интересной для нас планеты – остаётся всё ещё спорной; разные модели предсказывают то поглощение нашей родины, то благополучный исход – впрочем, лишь для самой планеты, а не биосферы на её раскалённой огромным близким светилом поверхности.

По мнению Клауса-Питера Шрёдера и Роберта Смита, правы, увы, первые модели. Работа учёных принята к публикации в Monthly Notices of the Royal Astronomical Society. Шрёдеру и Смиту, воспользовавшихся самыми точными на сегодняшний момент моделями, откалиброванными на наблюдениях множества реально существующих звёзд, впервые удалось подробно учесть не только расширение орбит из-за потери массы, но и обратное влияние планеты на поверхность светила.

И именно это взаимодействие обрекает Землю на исчезновение в горячем теле нашего светила.

Дело в том, что на внешние слои будет действовать земное притяжение, которое вызовет на поверхности небольшую приливную волну. Приливные волны всегда немного отстают от тех светил, что их вызывают – широко известно, что на Земле максимальные приливы даже в сизигиях (когда Солнце и Луна находятся на одной линии относительно Земли) слегка отстают от момента, когда Луна максимально высоко поднимается над поверхностью в данном месте планеты.

Читайте также:  Чему равен период обращения солнца вокруг своей оси

Отставание крохотных приливных горбов, которые уже Земля образует на Солнце, приведёт к тому, что их притяжение будет, в свою очередь, чуть притормаживать движение Земли по орбите, из-за чего даже потеря массы не позволит нашей планете убежать от распухшего Солнца. Внесёт свой вклад и трение о внешние, разреженные области хромосферы светила.

Детальные расчёты показывают, что выжить Земля могла бы лишь в случае, если её сегодняшняя орбита была бы всего на 15% шире. А Земле на её нынешнем удалении от Солнца неизбежно светит оказаться внутри его распухших внешних слоёв.

Впрочем, произойдёт это не скоро – от печального конца планету отделяют ещё 7,59 миллиардов лет.

К тому моменту Солнце будет на треть легче, чем сейчас. Это обстоятельство также позволило авторам представить, как будет выглядеть наше светило по окончании своей жизни. По их расчётам, следующая за стадией красного гиганта фаза жизни – а скорее, даже гибели – Солнца (она называется стадия асимптотической ветви гигантов) будет достаточно скромной. Через 150 миллионов лет после максимального распухания светило вновь распухнет, однако, в отличие от большинства звёзд, не достигнет максимальных размеров на предыдущей стадии.

Карликовая планетарная туманность IC 2149. Именно так, по мнению Шрёдера и Смита, будет выглядеть Солнечная система после превращения Солнца в белый карлик.
//astro.washington.edu

Кроме того, оно не сможет произвести достаточно сильного пылевого звёздного ветра, чтобы разогнать внешние слои звезды, превратив её в классическую планетарную туманность. После гибели Солнца и Земли на месте системы останется лишь околозвёздная оболочка массой в несколько процентов солнечной, в центре которой будет находиться белый карлик. Отсутствие планетарной туманности вокруг этой крохотной звезды делает финальную картину ещё более безрадостной, чем та, что так опечалила президента России Владимира Путина весной прошлого года.

Источник

Земля не может убегать от Солнца своими силами

Неожиданное расширение земной орбиты, открытое российскими учеными пять лет назад, вновь осталось без объяснения. Приливы, на которые японские астрономы пытались списать эффект, произвести его неспособны. Тяготение планет слишком слабое, чтобы вызвать нужные приливы.

В одном из альбомов группы Tequilajazzz лидер коллектива Евгений Федоров размышлял о расстоянии между Землей и Солнцем. По его словам, оно составляет 150 миллиардов шагов – «не метров, верст или там футов, а именно шагов». Так называется и упомянутый альбом «Текилы», «150 миллиардов шагов».

На самом деле, Федоров прав. При его росте расстояние от нашей планеты до нашего светила и вправду можно преодолеть примерно за 150 миллиардов шагов, хотя со средней человеческой скоростью 2 шага в секунду на это путешествие обычной человеческой жизни не хватит.

Астрономическая единица

Между тем астрономы знают среднее расстояние от Земли до Солнца, большую полуось эллиптической орбиты нашей планеты, с гораздо лучшей точностью. Эта величина называется астрономической единицей (а. е.), и уже из одного названия понятно, что она играет фундаментальную роль в науке о космосе. С ее помощью высчитываются положения планет, прокладываются траектории космических станций, измеряются массы объектов Солнечной системы. На ней построена и вся шкала астрономических расстояний, от ближайших звезд до самых далеких галактик. Даже оценки возраста Вселенной, в конечном счете, завязаны на а. е.

Правда, измерена астрономическая единица была лишь сравнительно недавно, а до того тысячи лет астрономия оставалась «относительной» наукой. К концу XVII века астрономы уже умели предсказывать конфигурацию планет на небе с очень высокой точностью, но линейные масштабы Солнечной системы были неизвестны. Лишь в 1672 году Жан Рише и Джованни Кассини, измерившие разницу в положении Марса при наблюдениях из Парижа и Французской Гвианы, получили первую надежную оценку (140 млн км в современных единицах).

Сейчас благодаря сверхточным измерениям положения межпланетных станций и задержек распространения их сигналов, мы знаем астрономическую единицу с огромной точностью. Ее значение составляет 149 миллиардов 597 миллионов 870 тысяч 696 метров (плюс/минус 10 см).

Шаг за шагом

Пять лет назад анализ все тех же наблюдений межпланетных станций привел российских астрономов Григория Красинского и Виктора Брумберга из Института прикладной астрономии РАН на Кутузовской набережной Петербурга к совершенно неожиданному выводу. По их расчетам, астрономическая единица увеличивается примерно на 15 см в год, или 15 метров за столетие.

Сам по себе вековой рост расстояния от Земли до Солнца не был неожиданным. В конце концов, светило постепенно теряет массу в виде света, рожденного в термоядерных реакциях, и притяжение Солнца медленно ослабевает, отпуская планеты все дальше и дальше. Проблема была в масштабах: световые потери, со всеми поправками на излучение нейтрино и разгон частиц звездного ветра, должны давать рост а. е. не больше полуметра за столетие. А из наблюдений получаются все 15, ну минимум 10 – то есть на полтора порядка больше.

Читайте также:  Когда зайдет до солнца со своим светом

Работа Красинского и Брумберга вызвала огромный интерес в среде специалистов по небесной механике и гравитации. Для объяснения эффекта выдвигались самые разные идеи – и сомнительное участие Земли в космологическом расширении Вселенной, и влияние облака темной материи, гипотетически окружающего Солнце, и медленное изменение гравитационной постоянной со временем. Кое-кто даже пытался связать эффект Красинского—Брумберга с «аномальным ускорением Пионеров» или привлечь его в поддержку альтернативных теорий гравитации – так, как медленный поворот орбиты Меркурия почти 100 лет назад поддержал Общую теорию относительности Эйнштейна.

Однако все эти попытки так и не увенчались успехом – предлагаемого эффекта всегда не хватало по величине, а иногда его влияние было и вовсе противоположно желаемому.

Бег от прилива

В первой половине этого года показалось, что вековой рост астрономической единицы, наконец, сможет найти объяснение. Отчаявшись вывести величину в 15 метров за столетие из известных законов и их параметров, японские астрофизики под руководством Такахо Миура из университета Хиросаки попробовали посмотреть на задачу с противоположной стороны. В мае их работа в Publications of the Astronomical Society of Japan появилась в Архиве электронных препринтов Корнельского университета.

Этот эффект отлично работает для системы Земля—Луна и очень точно измерен благодаря уголковым отражателям лазерного луча, доставленным на Луну советскими луноходами и американскими «Аполлонами». Приливы действительно удлиняют сутки на нашей планете примерно на 1,7 миллисекунды за столетие (когда-нибудь Земля будет смотреть на Луну одной и той же стороной, как сейчас Луна смотрит на Землю). А Луна действительно убегает от Земли примерно на 4 см в год, в точном соответствии с расчетом.

Миура и его коллеги записали школьные уравнения сохранения углового момента для системы Солнце—Земля и подсчитали, насколько должно замедляться вращение Солнца, чтобы Земля убегала от него на 15 см в год. Получилась 21 миллисекунда за столетие. С такой точностью период вращения Солнца попросту неизвестен – мы знаем лишь, что один оборот относительно звезд светило совершает за 25 суток, 9 часов и 7 минут. Какие уж тут 21 мс за 100 лет.

Японские ученые заключили, что полученное значение не противоречит наблюдательным данным, и в отсутствие лучшего варианта его можно считать объяснением эффекта Красинского—Брумберга. Правда, конкретный физический механизм замедления Солнца и ускорения Земли ученые предпочли оставить для последующих исследований.

Вековые миллиметры

Как теперь выясняется, победу над Красинским и Брумбергом праздновали рано. Соотечественник Миуры Есуки Ито из Астрономического института при университете Тохоку напрямую применил к системе Солнце—Земля пусть и не школьную, но, тем не менее, стандартную теорию ускорения спутников в поле вызванных ими приливов. И показал, что этого эффекта никак не хватает для объяснения векового роста астрономической единицы. Результаты его расчетов приняты к публикации в том же журнале, что и статья Миури, и доступны в том же Архиве электронных препринтов.

Предельная скорость роста орбиты, согласно проверенной наблюдениями теории, зависит лишь от размеров Солнца и земной орбиты, отношения масс планеты и светила и еще одного параметра — так называемого числа Лава. Этот параметр зависит от физических свойств и распределения вещества в теле Солнца (он показывает, насколько сильнó гравитационное поле самого прилива в сравнении с полем Земли).

Для Солнца число Лава напрямую не измерено. Однако астрономы давно наблюдают за поведением многих тысяч двойных звезд, среди которых немало светил, очень похожих на наше Солнце. По этим наблюдениям ученые надежно установили, как число Лава меняется в зависимости от массы и даже химического состава звезды. Ито оставалось лишь взять значение, подходящее для нашего Солнца.

Как выяснилось, приливы, которые Земля вызывает на Солнце, никак не в состоянии произвести должный эффект. Расширять земную орбиту они могут не более чем на 1 мм в сто лет. Более того, даже если предположить, что приливы, которые вызывают на Солнце все другие планеты, случайно складываются самым подходящим образом, все равно на этом эффекте больше 1 см за столетие не наберешь. А нужны не сантиметры, а 15 метров. В довершение всего, на взаимные расстояния между планетами и ориентации их орбит эти эффекты должны влиять совсем не так, как наблюдается.

Свет притягивает

Иными словами, эффект Красинского—Брумберга по-прежнему остается необъяснимым. По ощущениям Ито, объяснение может прийти сразу с нескольких направлений. Во-первых, разные методики дают немного отличающиеся значения для векового роста а. е., и сама необъяснимость может быть поводом сильнее верить тем методикам, что дают меньший эффект. Во-вторых, неточность в определении величины векового роста все еще велика – десятки процентов, и это тоже может дать свой вклад. Иными словами, не исключено, что с увеличением точности измерений и их обработки эффект может оказаться не таким страшным, как показалось поначалу.

Тем не менее, измерения векового роста остаются очень важными. В конце концов, расширение орбит из-за потери массы Солнцем с наблюдательной точки зрения надежно не измерено. А эта величина очень важна с точки зрения проверки принципа эквивалентности – одного из краеугольных камней Общей теории относительности. Эквивалентность энергии света и потерь гравитационной массы пока экспериментально не установлена. Похоже, этот экзамен эйнштейновской теории придется держать не в темноте глубокого космоса, а в свете Солнца, проносящемся мимо Земли.

Источник

Adblock
detector