Преобразование энергии солнечного света и организмы использующие её
Сегодня мы поговорим об организмах, которые используют в своей жизнедеятельности солнечную энергию. Для этого нужно затронуть такую науку, как биоэнергетика. Она изучает способы преобразования энергии живыми организмами и использование её в процессе жизнедеятельности. В основе биоэнергетики лежит термодинамика. Эта наука описывает механизмы преобразования различных видов энергии друг в друга. В том числе, использование и преобразование различными организмами солнечной энергии. С помощью термодинамики можно полностью описать энергетический механизм процессов, происходящих вокруг нас. Но с помощью термодинамики нельзя понять природу того или иного процесса. В этой статье мы попробуем объяснить механизм использования солнечной энергии живыми организмами.
Как живые организмы получают солнечную энергию?
Для описания преобразования энергии в живых организмах или прочих объектах нашей планеты следует рассмотреть их с точки зрения термодинамики. То есть, системы, обменивающейся энергией с окружающей средой и объектами. Их можно подразделить на следующие системы:
Через некоторое время эти вещества разрушаются и обеспечивают организм энергией. Их продукты распада удаляются из организма. Их место в организме заполняют другие молекулы. При этом целостность структуры организма не нарушается. Такое усвоение и переработка энергии в организме обеспечивает обновление организма. Энергетический обмен необходим для существования всех живых организмов. При остановке процессов преобразования энергии в организме он умирает.
4Н ⇒ Не4 + 2е + hv, где
v ─ длина волны гамма-лучей;
h ─ постоянная Планка.
В дальнейшем, после взаимодействия гамма-излучения и электронов, энергия выделяется в виде фотонов. Эту световую энергию излучает небесное светило.
Солнечная энергия при достижении поверхности нашей планеты улавливается и преобразуется растениями. В них энергия солнца превращается в химическую, которая запасается в виде химических связей. Это связи, которые в молекулах соединяют атомы. Примером может служить синтез глюкозы в растениях. Первая стадия этого преобразования энергии ─ фотосинтез. Растения обеспечивают его с помощью хлорофилла. Этот пигмент обеспечивает превращение лучистой энергии в химическую. Происходит синтез углеводов из H2O и CO2. Это обеспечивает рост растений и передачу энергии на следующую ступень.
Фотосинтез у растений
Здесь стоит дать ответ на часто задаваемый вопрос: «Какой органоид использует энергию солнечного света?». Это хлоропласты, участвующие в процесс фотосинтеза. Они используют её для синтеза из неорганических веществ органических.
В непрерывном потоке энергии заключается суть всего живого. Он постоянно движется между клетками и организмами. На клеточном уровне для преобразования энергии существуют эффективные механизмы. Можно выделить 2 основные структуры, где происходит превращение энергии:
Человек, как и другие живые организмы на планете, пополняет энергетический запас из продуктов. Причём, часть потребляемых продуктов растительного происхождения (яблоки, картофель, огурцы, помидоры), а часть животного (мясо, рыба и другие морепродукты). Животные, которые мы употребляем в пищу, энергию также получают из растений. Поэтому вся получаемая нашим организмом энергия преобразуется из растений. А у них она появляется в результате преобразования солнечной энергии.
По типу получения энергии все организмы можно разделить на две группы:
- Фототрофы. Черпают энергию из солнечного света;
- Хемотрофы. Получают энергию во время окислительно-восстановительной реакции.
Как преобразуется энергия в живых организмах?
Существует 3 основных разновидности энергии, преобразуемой организмами:
- Преобразование лучистой энергии. Этот вид энергии несёт солнечный свет. В растениях лучистая энергия улавливается пигментом хлорофиллом. В результате фотосинтеза она превращается в химическую энергию. Та, в свою очередь, используется в процессе синтеза кислорода и других реакциях. Солнечный свет несёт в себе кинетическую энергию, а в растениях она превращается в потенциальную. Полученный энергетический запас сохраняется в питательных веществах. К примеру, в углеводах;
- Преобразование химической энергии. Из углеводов и прочих молекул она превращается в энергию макроэргических фосфатных связей. Эти преобразования проходят в митохондриях.
- Преобразование энергии макроэргических фосфатных связей. Она расходуется клетками живого организма для совершения разных видов работ (механическая, электрическая, осмотическая и т. д.).
Преобразование энергии макроэргических фосфатных связей
Использование организмами накопленной энергии
В процессе метаболизма организм получает энергетический запас, расходуемый на совершение биологической работы. Это может быть световая, механическая, электрическая, химическая работа. И очень большая часть энергии организм расходует в виде тепла.
Ниже кратко описаны основные типы энергии в организме:
- Механическая. Характеризует движение макротел, а также механическую работу по их перемещению. Её можно разделить на кинетическую и потенциальную. Первая определяется скоростью передвижения макротел, а вторая ─ их местоположением по отношению друг к другу;
- Химическая. Определяется взаимодействием атомов в молекуле. Она является энергией электронов, которые двигаются по орбитам молекул и атомов;
- Электрическая. Это взаимодействие заряженных частиц, которое вызывает их движение в электрическом поле;
- Осмотическая. Расходуется при передвижении против градиента концентраций молекул вещества;
- Регуляторная энергия.
- Тепловая. Определяется хаотическим движением атомов и молекул. Основной характеристикой этого движения является температура. Этот вид энергии является самым обесцененных из всех, перечисленных выше.
r ─ постоянная Больцмана (1,380*10 -16 эрг/град).
Вернуться к содержанию
Как из питательных веществ освобождается энергия?
В процессе извлечения энергии из питательных веществ есть 3 условных этапа;
- Подготовительный. Этот этап требуется для перевода биополимеров в клетках пищи в мономеры. Эта форма лучше всего подходит для извлечения энергии. Этот процесс (гидролиз) протекает в кишечнике или внутри. Гидролиз идёт с участием лизосом и ферментов цитоплазмы. Энергетическая ценность этого этапа нулевая. На этой стадии высвобождается 1 процент энергетической ценности субстратов, и вся она теряется в виде тепла;
- На втором этапе частично распадаются мономеры с образованием промежуточных продуктов. Образуются кислоты цикла Кребса и ацетил─КоА. Количество исходных субстратов на этой стадии уменьшается до трёх и высвобождается до 20 процентов энергетического запаса субстратов. Процесс идёт анаэробно, то есть, без доступа кислорода. Энергия частично накапливается в фосфатных связях АТФ, а остаток расходуется в форме тепла. Распад мономеров идёт в гиалоплазме, а остальные процессы ─ в митохондриях;
- На заключительном этапе происходит распад мономеров до Н2O и СO2 в реакции с участием кислорода. Биологическое окисление происходит с полный высвобождением энергетического запаса. Из 3 трёх метаболитов, которые присутствовали на предыдущем этапе, остаётся лишь H2. Он является универсальным топливом в цепочке дыхания. На этом этапе освобождаются оставшиеся 80 процентов энергетического запаса. Часть энергии выходит в виде тепла, а остальная накапливается в фосфатных связях. Все реакции этого этапа идут в митохондриях.
Схема освобождения энергии из питательных веществ
Высвобождение энергии в живых клетках происходит постепенно. На всех этапах выделения она может накапливаться в химической форме, удобной для клеток вещества. Энергетическое строение клетки включает 3 разных функциональных блока, в которых идут различные процессы:
- I─процессы (образование субстратов окисления, которые соответствую окислительному ферменту в клетках);
- Блок S-H2 (субстрат окисления);
- Процессы H генерации водорода. На выходе получается КН2 (водород с коферментом).
Источник
животные способны , используя энергию солнца , создавать из неорганических веществ ,органические?верно ли
Нет, не верно. Этим занимаются растения.
Животные неспособны создавать из неорганических веществ органические, так как в их строении отсутствуют хлоропласты, а следовательно не может осуществляться фотосинтез. Исключением является эвглена зеленая. В темноте она питается как животное (гетеротрофный тип питания), а на свету как растение (автотрофный тип питания)
Другие вопросы из категории
использования в качестве бонсай. Распространено в Австралии, а также Новой Зеландии, Малайзии и островах Малайского архипелага. Впишите латинское название его рода латинскими буквами.
ріжки
сажковий
мукор
аспергіл
Читайте также
Выберите и выпишите через запятую только
правильные утверждения.
Зоология — наука о грибах.
Тело всех живых организмов состоит
из клеток.
Яйцеклетка — мужская половая
клетка.
Процесс слияния половых клеток
называется оплодотворением.
Животные способны, используя
энергию солнца, создать из неорганических веществ органические.
Ботаника – наука о
наследственности.
Линней создал классификацию
организмов.
Родственные роды объединяются в
виды.
Гриб-боровик, подосиновик, сыроежка
относятся к царству растений.
Биология- основа сельского хозяйства и медицины.
вещества и другие г) использую энергию Земли
Самыми древними из одноклеточных животных ученые считают простейшие жгутиковые. Они занимают положение между. так как способны , используя энергию солнца,образовывать органические вещества, а тык же могут, как и другие животные, питаться органическими веществами.
готовых белков, жиров, углеводов 3.организмы, используемые химическую энергию неорганических веществ 4. организмы, используюшие энергию солнечного света 5.название биологического окисления органических вещестив 6. хемосинтетики представлены исключительно 7. к фотосинтезу способны следующие организмы 8. количество стадий фотосинтеза 9. для фотосинтеза необходим растительный пигмент 10. местонахождение молекул хлорофила в хлоропласте 11. стадия фотосинтеза на которой растения используют воду 12. стадия фотосинтеза на которой растения используют СО2 атмосферы 13. кислород растения выделяют на стадии фотосинтеза 14. АТФ растения синтезируют на стадии фотосинтеза 15. энергию света растения используют на стадии фотосинтеза 16. глюкозу растения синтерзирую на стадии фотосинтеза 17. фотолиз происходит на стадии фотосинтеза 18. разложение воды под действием света называется 19. для синтеза глюкозы в темновой фазе используется энергия 20. темновая фаза происходит 21 световая фаза происходит 22. благодаря растениям все живые организмы как внешний источник энергии использует 23. организмы, первые осуществившие фотосинтез 24. количество этапов процесса дыхания 25. 1- этап дыхания — количество Е в виде АТФ 26. 2 — этап дыхания — количество Е в виде АТФ 27. 3- этап дыхания — количество Е в виде АТФ 28. из 1 молекулы глюкозы при ее полном разложении образуется . молекул АТФ 29. О2 необходим на этапе дыхания 30. СО2 выделяется на этапе дыхания 31. органические вещества взаимодействуют с пищеварительными ферментами этапе дыхания 32. из одной молекулы глюкозы образуются 2 молекулы пировиноградной или молочной кислоты на этапе дыхания 33. брожение может происходить на этапе дыхания 34. бескислородное разложение глюкозы называется 35. организмы живущие в бескислородной среде не нуждающиеся в О2 и использующие только а 1 и 2 этапе дыхания 36.организмы живущие а бескислородной среде и осуществляющие все этапы дыхания 37. по способу получения энергии цинобактерии ( синезеленые водоросли ) относятся 38. по способу получения энергии грибы относятся 39. по способу получения энергии зеленые растения относятся 40. по способу получения энергии болезнетворные растения относятся 41. по способу получения энергии бактерии гниения относятся 42. молочная кислота- результат этапа 43. 3 этап дыхания происходит 44. какой энергетический органоид характерен для растений и для животных 45. системы органов обеспечивающие саморегуляцию у человека и у животных
энергию из неорганических веществ. 3) Они используют солнечную энергию для создания органических веществ. 4) Они извлекают энергию из поедаемых ими растений и животных.
Источник
Организмы использующие энергию солнечного света
Солнечная энергия и её влияние на живые организмы
Солнечная энергия распространяется в пространстве в виде электромагнитных волн (световая и тепловая энергии). Для организмов важными являются длина волны, его интенсивность и продолжительность воздействия.
Свет – первичный источник энергии, без которого невозможна жизнь на Земле. Около 99 % всё энергии солнечной радиации составляют лучи с длиной волны (170-4000 нм), в том числе 48 % приходится на видимую часть спектра (390….760 нм), 45 % — на близкую инфракрасную (760…. 4000 нм) и около 7 % — на ультрафиолетовую ( 4000 нм) незначительно влияет на процессы жизнедеятельности организмов. Ультрафиолетовые лучи с длиной 320 нм в малых дозах необходимы животным и человеку, так как под их действием в организме образуется витамин Д.
При прохождении через атмосферный воздух солнечный свет отражается, рассеивается и поглощается. Чистый снег отражает примерно 80 – 95 % солнечного света, загрязнённый – 40 – 50 %, черноземная почва – до 5 %, сухая светлая почва – 35 – 45 %, хвойные леса – 10 – 15 %.
Важное значение для растений имеет интенсивность освещения. По отношению к освещенности они подразделяются на светолюбивые (гелиофиты), тенелюбивые (сциофиты) и теневыносливые (факультативные гелиофиты). Первые не выносят тени, вторые – яркого солнечного света, теневыносливые имеют широкий диапазон толерантности к свету. К гелиофитам относятся мать-и-мачеха, одуванчик, верблюжья колючка, нивяник обыкновенный, берёза бородавчатая, сосна обыкновенная и др.
Факультативные гелиофиты – культурные растения (пшеница, рожь, ячмень, кукуруза и т. д.) и большинство видов лесной зоны (спирея обыкновенная, герань обыкновенная и др.), многие комнатные растения тропического происхождения (седум, сальвиния и др.). Сциофитами являются ландыш майский, недотрога, папоротник-орляк, герань лесная и др.
Свет играет большую и разнообразную роль в различных жизненных процессах у животных, что определяется его физическими свойствами. Биологическое действие радиации (ионизирующее излучение) осуществляется на субклеточном уровне (ядра, митохондрии, микросомы). При небольших дозах повреждающий эффект может сменяться стимулирующим. Ионизирующая радиация при действии н7а генетический аппарат вызывает мутационные изменения.
Ультрафиолетовая радиация обладает канцерогенным (вызывает опухоли) действием, а также инактивируют в коже клетки Лангерганса, отвечающие за её иммунитет, активируют некоторые микробы. Однако, лучи от 300 нм стимулируют процессы клеточного синтеза (например, повышается продуктивность молодняка сельскохозяйственных животных при их облучении). Под действием этих лучей в организме синтезируется витамин Д, регулирующий обмен Са и Р, а соответственно нормальный рост и развитие скелета (например, «солнечное купание» свойственно многим птицам, лисам и барсукам).
Видимая часть спектра важна для животных, так как это связано с ориентированием в окружающей среде.. Многие ночные виды ориентируются с участием органов зрения, так как абсолютная темнота в сфере обитания животных встречается редко. Ослабление интенсивности света вызывает адаптивные перестройки органов зрения (совы, козодои, некоторые ночные млекопитающие). Обитание в условиях полной темноты, как правило, связано с редукцией органов зрения (виды, обитающие в пещерах и многие почвенные организмы).
В океане интенсивность освещения падает с глубиной. У рыб, обитающих на мелководье, где спектральный состав света мало отличается от суши, имеется в сетчатке большой процент колбочек, чувствительных к красному цвету. Среди глубоководных рыб большинство имеют в сетчатке лишь один тип палочек, чувствительных к синему свету. Дальнейшее увеличение глубины связано у одних видов с редукцией органов зрения, а у других – с развитием гипертрофированных глаз, воспринимающих очень слабый свет.
Последнее в значительной степени определяется наличием на больших глубинах светящихся организмов, способных иногда создавать освещение порядка 10 -2 мкВт/см2, что выше порога световой чувствительности животных. Биологическое свечение используют многие рыбы, образуя симбиотические связи со светящимися микроорганизмами.
Освещённость земной поверхности существенно колеблется в зависимости от времени года и суток, географической широты, экспозиции склона, состояния атмосферы и т.п.
Свет имеет большое сигнальное значение и вызывает регулярные адаптации организмов. Вследствие вращения Земли периодически чередуются светлое и тёмное время суток. Цветение, прорастание семян у растений, миграция, зимняя спячка, размножение животных в природе связаны с длительностью фотопериода (длиной дня).
Фотопериод – это некое «реле времени«, включающее последовательность физиологических процессов в организме. Необходимость в свете для растений обуславливает быстрый рост в высоту, ярусную структуру леса. Водные растения распространяются преимущественно в поверхностных слоях водоёмов.
Развитие живой природы по сезонам года проходит в соответствии с биоклиматическим законом, который носит имя Хопкинса: сроки наступления различных сезонных явлений (фенодат) зависят от широты, долготы местности и её высоты над уровнем моря. Значит, чем севернее, восточнее и выше местность, тем позже наступает весна и раньше осень. Для Европы на каждом градусе широты сроки сезонных событий наступают через три дня.
Температура также связана с солнечным излучением. Она служит важнейшим из ограничивающих (лимитирующих) факторов. Пределами толерантности для любого вида являются максимальная и минимальная летальные температуры, за пределами которых вид смертельно поражают жара или холод. При температуре ниже точки замерзания живая клетка физически повреждается образующимися кристаллами льда и гибнет, а при высоких температурах происходит денатурация (изменение естественных свойств белков) ферментов. Абсолютное большинство растений и животных не выдерживает отрицательных температур тела. Верхний температурный предел жизни редко поднимается выше 40-45 о С.
В диапазоне между крайними границами скорость ферментативных реакций (следовательно, и интенсивность обмена веществ) удваивается с повышением температуры на каждые 10 0 С.
Закон биологической стойкости (по М. Ламмоту), применимый к любому из важнейших лимитирующих факторов, гласит: величина «оптимального интервала» характеризует величину «стойкости» организма, т. е. его величину толерантности к этому фактору, или «экологическую валентность».
Организмы, способные контролировать (поддерживать) температуру тела, называют гомойотермными — теплокровными (от греч. homoios – подобный, therme – теплота): рыбы, земноводные, пресмыкающиеся, насекомые и др.
Гомойотермные организмы – холоднокровные(от греч. poiklos – различный, переменчивый, разнообразный), зависят от температуры окружающей среды: млекопитающие и птицы.
Не меньшее значение температура играет в жизни растений. При повышении температуры на 10 0 С интенсивность фотосинтеза увеличивается в два раза, но лишь до + 30 – 35 0 С, затем его интенсивность падает и при + 40 0 С – 45 0 С фотосинтез прекращается. При 50 0 С большинство наземных растений погибают.
Температура также зависит от географической широты, сезона, времени суток и экспозиции склона. Изменение температуры по мере подъёма в воздушную среду или погружения в водную среду называется температурной стратификацией.
Растения и животные способны приспосабливаться (адаптироваться) к параметрам интенсивности света. Приспособления наземных растений направлены на улавливание и поглощение световой энергии.
К первой группе адаптаций следует отнести увеличение площади фотосинтетической поверхности, например явление листовой мозаики, когда листья не перекрывают друг друга (у липы, клёна и др.). У травянистых растений верхние листья располагаются почти вертикально, нижние, более затенённые, — под небольшим углом к горизонтали, а средние — занимают промежуточное положение (например у злаков в посевах и на лугах). Важно в экологическом отношении понятие «индекс листовой поверхности» или ИЛП.
Известно, что ИЛП соснового леса примерно 7-10 (т.е. на 1 га леса приходится 7-10 га листовой поверхности. Однако, увеличение площади листьев (выгодное по отношению к световому фактору) одновременно означает увеличение транспирации. В связи, с чем при недостатке водоснабжения растения не увеличивают площадь листьев. К тому же, сильное загущение насаждений, вызывает их затенение, что в свою очередь снижает суммарный фотосинтез и способствует усилению конкурентных отношений между растениями. Следствием затенения является недоразвитие механической ткани в стебле, это может привести к полеганию растений. Следовательно, повышение продуктивности за счёт увеличения листовой поверхности имеет определённый предел.
ИЛП культурных растений и естественных фитоценозов составляет всего 5-6, т.е. поверхность почвы в фитоценозе затенена 5-6 слоями листьев. Видимо, такая листовая поверхность является оптимальной для большинства фитоценозов, и их продуктивность при этом максимальна.
Второй группой приспособлений к улавливанию света служит увеличение общей поверхности самих хлоропластов , которым свойственен фототаксис (перемещение к источнику света или от него). Если интенсивность света высока, то хлоропласты переходят на боковые стенки и «подставляют» лучам свои боковые грани. Приспособлением для улавливания света служит изменение концентрации хлорофилла в листьях. Известно, что в ясные дни она снижается. Количество хлорофилла в листьях соответствует оптимальной для данного вида напряжённости света.
Если изменяется эта величина, то количество пигментов падает (и при увеличении и при уменьшении интенсивности света). Минимальное количество хлорофилла у световых растений отмечается при полном дневном освещении. При повышении температуры разрушение хлорофилла идёт быстрее, чем его образование, и рост растения снижается, поэтому при ярком свете и высокой температуре растения стараются избегать перегрева, для чего поворачивают листовую пластинку ребром к солнечным лучам.
Третья группа приспособлений относится к способу поглощения радиации листом. Лучи, отраженные от листа или прошедшие через него, сильно обеднены фотохимически активной радиацией (ФАР). ФАР совпадает с диапазоном видимой части спектра (400 – 700 нм). Некоторые бактерии, имеющие бактериохлорофиллы, способны поглощать свет в длинноволновой части спектра (в области 800 – 1000 нм). Зелёный лист поглощает в среднем 75 % падающей на него лучистой энергии.
Однако коэффициент использования её на фотосинтез составляет около 10 % при низкой освещённости и лишь 1-2 % — при высокой. Остальная энергия переходит в тепловую, которая затрачивается на транспирацию и другие процессы. Фотосинтез зависит от температуры. Минимальная температура, при которой возможен фотосинтез, видоспецифична и отражает приспособленность вида к температурным условиям среды. У многих видов она совпадает с температурой замерзания тканевых жидкостей (-1 0 С, -2 0 С), но у наиболее холодолюбивых форм опускается до -5… -7 0 С.
Максимальная температура фотосинтеза в среднем на 10 -12 0 С ниже точки тепловой смерти. Температурный максимум фотосинтеза выше у южных растений. Оптимальной температурной зоной для фотосинтеза принято считать тепловые условия, при которых фотосинтез достигает 90 % своей максимальной величины; эта зона зависит от освещённости: повышается при её увеличении и снижается в условиях затенения. При низкой освещенности фотосинтез идёт активнее при более низких температурах, а при высокой (более 3000 лк) интенсивность этого процесса увеличивается с повышением температуры.
Освещенность также влияет на процесс фотосинтеза и характеризуется кривой насыщения: вначале с повышением освещённости кривая потребления СО идёт вверх, затем – по достижении определённого порога освещённости – нарастание фотосинтеза снижается, кривая приобретает форму гиперболы. Прослеживаются закономерности экологического плана: у тенелюбивых растений насыщение наступает при меньшей освещённости, чем у светолюбивых. Минимальное освещение, при котором поглощение диоксида углерода для фотосинтеза равно выделению его при дыхании, называют точкой компенсации; у светолюбов она располагается выше, чем у тенелюбов. Положение этой точки зависит от концентрации СО2 и от температуры.
Источники углерода
Организмы, живущие за счет неорганического источника углерода (двуокиси углерода), называют автотрофными (автотрофами) (греч. autos — сам), а организмы, использующие органический источник углерода, — гетеротрофными (гетеротрофами) (греч. heteros — другой). В отличие от гетеротрофов автотрофы удовлетворяют все свои потребности в органических веществах, синтезируя их из простых неорганических соединений.
В табл. 9.1 представлены обе эти классификации — по источнику энергии и по источнику углерода.
Хорошо видны их взаимоотношения. Кроме того, выявляется еще один очень важный принцип, а именно то, что хемотрофные организмы целиком зависят от фототрофных, которые поставляют им энергию, а гетеротрофные организмы полностью зависят от автотрофов, снабжающих их соединениями углерода.
Таблица 9.1. Классификация живых организмов в соответствии с основным источником углерода и энергии*
Самые важные группы — фотоавтотрофы (к которым относятся все зеленые растения) и хемогетеротрофы (все животные и грибы).
Если на время пренебречь некоторыми бактериями, положение еще более упростится, и можно будет сказать, что гетеротрофные организмы в конечном счете зависят от зеленых растений, доставляющих им энергию и углерод. Иногда фотоавтотрофные организмы называют голофитными (греч. holos — целый, полный, phyton — растение).
9.1. Дайте определение, что такое фотоавтотрофное питание и хемогетеротрофное питание.
Игнорируя пока две меньшие группы (см. табл. 9.1), мы должны, однако, сразу же отметить, что жизнедеятельность хемосинтезирующих организмов тоже имеет очень важное значение.
Несколько организмов нельзя всецело отнести к какой-то одной из четырех групп. Так, например, Euglena обычно ведет себя как автотроф, но некоторые виды могут жить как гетеротрофы и в темноте, если имеется источник органического углерода.
Взаимоотношения между двумя главными категориями еще лучше представлены на рис. 9.1; здесь показано также, каким образом потоки энергии и углерода включаются в общий круговорот между живыми организмами и средой. Эти вопросы имеют важное значение для экологии.
Рис. 9.1. Поток энергии (белые стрелки) и круговорот углерода (закрашенные стрелки) у фотоавтотрофов и хемогетеротрофов и сбалансированность фотосинтеза и дыхания. Световая энергия превращается в химическую в процессе фотосинтеза; химическая энергия используется для синтеза органических соединений из неорганических компонентов. Органические соединения служат источником углерода и энергии для хемогетеротрофов: углерод и энергия вновь высвобождаются в процессе дыхания (этот процесс идет и у растений).
Всякое превращение сопровождается некоторой потерей энергии в виде тепла
Углерод высвобождается в процессе дыхания в виде СО2, а СО2 затем снова превращается в процессе фотосинтеза в органические соединения. Более подробно круговорот углерода представлен на рис. 9.2, где показана и та роль, которую играют в этом процессе хемосинтезирующие организмы.
Рис. 9.2. Круговорот углерода. Жирными стрелками показан преобладающий путь (из двух возможных). По некоторым приблизительным оценкам действительное количество углерода составляет: В океане: (в основном в составе фитопланктона): 40·1012 кг углерода в год фиксируется в процессе фотосинтеза в виде СО2.
Большая часть его затем высвобождается при дыхании. На суше: 35·1012 кг углерода в год фиксируется при фотосинтезе в виде СО2; 10·1012 кг углерода в год выделяется при дыхании растений и животных; 25·1012 кг углерода в год выделяется при дыхании редуцентов; 5·1012 кг углерода в год высвобождается при сжигании ископаемого топлива; этого количества вполне достаточно для постепенного увеличения концентрации двуокиси углерода в атмосфере и в океанах
Обеспечение клеток энергией
Любой живой организм, как и отдельная клетка, является открытой системой, т. е. обменивающейся с окружающей средой веществом и энергией. Всю совокупность ферментативных реакций обмена веществ, протекающих в организме, называют метаболизмом (от греч. «метаболе» — превращение).
Метаболизм состоит из взаимосвязанных реакций ассимиляции — синтеза высокомолекулярных соединений (белков, нуклеиновых кислот, полисахаридов, липидов) и диссимиляции — расщепления и окисления органических веществ, идущих с превращением энергии.
Ассимиляция, называемая также пластическим обменом, невозможна без энергии, выделяющейся в результате диссимиляции (энергетического обмена). Диссимиляция, в свою очередь, не идет без ферментов, образующихся в результате пластического обмена.
Любое проявление жизнедеятельности (поглощение воды и растворенных в ней неорганических соединений, синтез органических веществ, расщепление полимеров на мономеры, генерация тепла, движение и др.) нуждается в затрате энергии.
Основным источником энергии для всех живых существ, которые населяют нашу планету, служит энергия солнечного света. Однако непосредственно ее используют только клетки зеленых растений, одноклеточных водорослей, зеленых и пурпурных бактерий. Эти клетки за счет энергии солнечного света способны синтезировать органические вещества — углеводы, жиры, белки, нуклеиновые кислоты.
Биосинтез, происходящий при использовании световой энергии, называют фотосинтезом. Организмы, способные к фотосинтезу, называют фотоавтотрофными.
Исходными веществами для фотосинтеза служат вода, углекислый газ атмосферы Земли, а также неорганические соли азота, фосфора, серы из водоемов и почвы.
Источником азота являются также молекулы атмосферного азота (N2), которые усваиваются бактериями, живущими в почве и в корневых клубеньках главным образом бобовых растений. Газообразный азот переходит при этом в состав молекулы аммиака — NH3, который впоследствии используется для синтеза аминокислот, белков, нуклеиновых кислот и иных азотсодержащих соединений.
Клубеньковые бактерии и бобовые растения нужны друг другу. Совместное взаимовыгодное существование разных видов организмов называют симбиозом.
К синтезу органических веществ из неорганических, кроме фото-автотрофов, способны и некоторые бактерии (водородные, нитрифицирующие, серобактерии и др.).
Они осуществляют этот синтез за счет энергии, выделяющейся при окислении неорганических веществ. Их называют хемоавтотрофами. Процесс хемосинтеза был открыт в 1887 г. русским микробиологом С. Н. Виноградским.
Все живые существа нашей планеты, неспособные синтезировать органические вещества из неорганических соединений, называют ге-теротрофами.
Все животные и человек живут за счет запасенной растениями энергии Солнца, превращенной в энергию химических связей вновь синтезированных органических соединений.
Следует отметить, что и фотосинтезирующие и хемосинтезирующие организмы также способны получать энергию благодаря окислению органических веществ.
Однако гетеротрофы получают эти вещества извне готовыми, а автотрофы синтезируют их из неорганических соединений.
Фотосинтезирующие клетки, поглощая углекислый газ из атмосферы, выделяют в нее кислород. До появления на нашей планете фотосинтезирующих клеток атмосфера Земли была лишена кислорода. С появлением фотосинтезирующих организмов постепенное наполнение атмосферы кислородом привело к возникновению клеток с энергетическим аппаратом нового типа.
Это были клетки, производящие энергию за счет окисления готовых органических соединений, главным образом углеводов и жиров, при участии атмосферного кислорода в качестве окислителя. При окислении органических соединений высвобождается энергия.
В результате насыщения атмосферы кислородом возникли аэробные клетки, способные использовать кислород для получения энергии.
Фотосинтез. Преобразование энергии света в энергию химических связей
Первые клетки, способные использовать энергию солнечного света, появились на Земле примерно 4 млрд лет тому назад в архейскую эру. Это были цианобактерии (от греч. «цианос» — синий).
Их окаменелые остатки были найдены в слоях сланцев, относящихся к этому периоду в истории Земли. Потребовалось еще около 1,5 млрд лет для насыщения атмосферы Земли кислородом и возникновения аэробных клеток.
Очевидно, что роль растений и иных фотосинтезирующих организмов в развитии и поддержании жизни на нашей планете исключительно велика: они превращают энергию солнечного света в энергию химических связей органических соединений, которая далее используется всеми остальными живыми существами; они насыщают атмосферу Земли кислородом, который служит для окисления органических веществ и извлечения таким способом запасенной в них химической энергии аэробными клетками; наконец, определенные виды растений в симбиозе с азотфиксирующими бактериями вводят газообразный азот атмосферы в состав молекул аммиака, его солей и органических азотсодержащих соединений.
Роль зеленых растений в планетарной жизни трудно переоценить. Сохранение и расширение зеленого покрова Земли имеет решающее значение для всех живых существ, населяющих нашу планету.
Запасание энергии света в биологических «аккумуляторах»
Поток солнечных лучей несет волны света разной длины.
Растения с помощью световых «антенн» (это главным образом молекулы хлорофилла) поглощают волны света красной и синей частей спектра. Волны света зеленой части спектра хлорофилл пропускает не задерживая, и поэтому у растений зеленый цвет.
С помощью энергии света электрон в составе молекулы хлорофилла переносится на более высокий энергетический уровень. Далее этот высокоэнергетический электрон, как по ступенькам, перескакивает по цепи переносчиков электронов, теряя энергию.
Энергия электронов при этом расходуется на «зарядку» своего рода биологических «аккумуляторов». Не углубляясь в химические особенности их строения, скажем, что один из них — аденозинтрифосфорная кислота, которую называют также аденозинтрифосфатом (сокращенно — АТФ). Как уже говорилось в § 6, в АТФ содержатся связанные между собой три остатка фосфорной кислоты, которые присоединены к аденозину.
Схематически АТФ можно описать формулой: аденозин—Ф—Ф
Ф, где Ф — остаток фосфорной кислоты. В химической связи между вторым и третьим концевым фосфатом запасается энергия, которую отдает электрон (такая особая химическая связь изображена волнистой линией). Это происходит в результате того, что при передаче электроном своей энергии к аденозиндифосфату (аденозин—Ф—Ф, АДФ) присоединяется еще один фосфат: АДФ+Ф+Е → АТФ, где Е — энергия электрона, которая запасается в АТФ.
При расщеплении АТФ ферментом аденозинтрифосфатазой (АТФазой) концевой фосфат отщепляется и освобождается энергия:
В растительной клетке энергия АТФ используется для транспорта воды и солей, для деления клеток, роста и движения (вспомните, как поворачивается вслед за Солнцем головка подсолнуха).
Энергия АТФ необходима для синтеза в растениях молекул глюкозы, крахмала, целлюлозы и иных органических соединений.
Однако для синтеза в растениях органических веществ необходим еще один биологический «аккумулятор», запасающий энергию света. Этот аккумулятор имеет труднопроизносимое длинное название: никотин-амидадениндинуклеотидфосфат (сокращенно — НАДФ, произносится как «над-эф»).
Это соединение существует в восстановленной высокоэнергетической форме: НАДФ-Н (произносится как «над-эф-аш»).
Потерявшая энергию окисленная форма этого соединения представляет собой НАДФ+ (произносится как «над-эф-плюс»).
Теряя один атом водорода и один электрон, НАДФ-Н превращается в НАДФ+ и восстанавливает углекислый газ (при участии молекул воды) до глюкозы С6Н1206; недостающие протоны (Н+) берутся из водной среды.
В упрощенной форме этот процесс можно записать в виде химического уравнения:
Однако при смешивании углекислого газа и воды глюкоза не образуется. Для этого нужна не только восстанавливающая сила НАДФ-Н, но и энергия АТФ и соединение, связывающее С02, которое используется на промежуточных этапах синтеза глюкозы, а также ряд ферментов — биологических катализаторов этого процесса.
Фотолиз воды
Каким образом в ходе фотосинтеза образуется кислород?
Дело в том, что энергия света расходуется также на расщепление молекулы воды — фотолиз. При этом образуются протоны (Н+), электроны (О и свободный кислород:
Электроны, образующиеся при фотолизе, восполняют потери их хлорофиллом (как говорят, заполняют «дырку», возникшую в хлорофилле).
Часть электронов при участии протонов восстанавливает НАДФ+ до НАДФ-Н. Кислород — побочный продукт этой реакции (рис. 19). Как видно из суммарного уравнения синтеза глюкозы, при этом выделяется кислород.
Когда растения используют энергию солнечного света, кислород им не нужен.
Однако в отсутствие солнечного освещения растения становятся аэробами. В ночной темноте они потребляют кислород и окисляют запасенные днем глюкозу, фруктозу, крахмал и другие соединения, уподобляясь в этом животным.
Световая и темновая фазы фотосинтеза
В процессе фотосинтеза различают световую и темновую фазы. При освещении растений энергия света преобразуется в энергию химических связей АТФ и НАДФ-Н. Энергия этих соединений легко освобождается и используется внутри клетки растения для разных целей, в первую очередь для синтеза глюкозы и иных органических соединений.
Поэтому такую начальную стадию фотосинтеза называют световой фазой. Без освещения солнечным или искусственным светом, в спектре которого есть красные и синие лучи, синтез АТФ и НАДФ-Н в клетке растения не происходит. Однако, когда в растительной клетке уже накопились молекулы АТФ и НАДФ-Н, синтез глюкозы может происходить и в темноте, без участия света. Для этих биохимических реакций освещение не нужно, поскольку они уже обеспечены энергией света, запасенной в биологических «аккумуляторах».
Эту стадию фотосинтеза называют темповой фазой.
Рис. 19. Схема фотосинтеза
Все реакции фотосинтеза происходят в хлоропластах — утолщенных овальных или круглых образованиях, расположенных в цитоплазме растительной клетки (кратко о хлоропластах уже говорилось в § 9).
В каждой клетке находится 40—50 хлоропластов. Хлоропласты ограничены снаружи двойной мембраной, а внутри их размещаются тонкие плоские мешочки — тилакоиды, также ограниченные мембранами. В тилакоидах находятся хлорофилл, переносчики электронов и все ферменты, участвующие в световой фазе фотосинтеза, а также АДФ, АТФ, НАДФ+ и НАДФ-Н.
Десятки тилакоидов плотно уложены в стопки, которые называют гранами. Во внутреннем пространстве между гранами — в строме хлоропластов — размещаются ферменты, участвующие в восстановлении С02 до глюкозы за счет энергии продуктов световой фазы фотосинтеза — АТФ и НАДФ-Н.
Следовательно, в строме происходят реакции темновой фазы фотосинтеза, тесно связанные со световой фазой, которая развертывается в тилакоидах. Световая и темновая фазы фотосинтеза схематически изображены на рисунке 19.
Хлоропласты имеют свой собственный генетический аппарат — молекулы ДНК и автономно воспроизводятся внутри клеток. Полагают, что более 1,5 млрд лет назад они были свободными микроорганизмами, которые стали симбионтами клеток растений.
Растения хищники
Все растения можно разделить на две большие группы по типу получения питательных веществ – автотрофы и гетеротрофы. Подавляющее большинство существующих на Земле растений относится к автотрофам, которые образуют органические вещества из неорганических в процессе фотосинтеза.
Небольшое количество видов растений принадлежат к группе гетеротрофов, которые получают питательные вещества или за счет организма хозяина (растения-паразиты), или поедая непосредственно насекомых (растения-хищники).
Растения-хищники – это, в основном, многолетние травянистые растения.
Они ловят насекомых, в редких случаях и других небольших животных, используя их в качестве дополнительного источника питания (главную роль играет азотистое питание).
Насекомоядные растения широко распространены по всей Земле. К ним относятся приблизительно 50 видов из шести семейств (росянковые, непентесовые, пузырчатковые, цефалотовые и сарранциевые). В России произрастают 18 видов из четырех родов, которые принадлежат к двум семействам: пузырчатковых (жирянка, пузырчатка) и росянковых (альдрованда, росянка).
Средой обитания насекомоядных растений являются пресные водоемы или заболоченные луга и болота, где наблюдается недостаток азотистых соединений, необходимых для роста растений.
Чтобы восполнить недостаток азота, а также калия, фосфора и других необходимых веществ, растения-хищники прибегают к ловле насекомых с помощью ловчих аппаратов – видоизмененных листьев.
Источник