Меню

Жизненный цикл звезд вселенной

Как происходит эволюция звёзд

Как известно, звезда — это гигантский раскаленный газовый шар, находящийся в состоянии равновесия. Внутри этого шара происходят термоядерные реакции, в результате которых вырабатывается энергия и излучается свет.
Практически любо тело во Вселенной имеет свой жизненный цикл. Собственно говоря, светила не исключения. Они также рождаются и умирают, как и другие тела. Правда, жизненный путь звезд, то есть последовательные изменения в течение всей её жизни, очень долгий. Ниже мы как раз рассмотрим основные этапы эволюции звезд.

Проксима Центавра

Стадии эволюции звезд

Основные этапы эволюции звезд, можно сказать, как у всех в нашей Вселенной.

Из них, главным образом, выделяют:

Но, как и мы отличаемся друг от друга, так и звёзды. Под влиянием разных факторов их жизненный путь у каждого свой. Всё как у людей. Нас даже создала одна природа и сила — сила нашей Вселенной.

Как появляются звёзды

Сначала в космическом пространстве образуются огромные газовые облака. На самом деле, эти холодные разреженные облака межзвёздного газа сжимаются под силой гравитации. Так начинается процесс звёздного формирования.

На его конечном этапе объект называют протозвездой. Вроде уже и не просто облако, но еще и не полноценное светило. Во время сжатия температура таких газовых облаков резко увеличивается. Из-за чего, в свою очередь, внутри них начинают происходить термоядерные реакции синтеза гелия из водорода.

Протозвезда

Главная последовательность

Именно в это время, то есть с началом ядерных процессов, рождается звезда. На данном этапе, чаще всего, она является представителем главной последовательности звезд. Правда, бывают и исключения. Например, субкарлики и коричневые карлики. Они отличаются небольшой массой и слабым ядерным синтезом.

Коричневый карлик

Между прочим стадия главной последовательности самая длинная в жизни светил (около 90% от общей продолжительности). Остальные же их этапы существования длятся значительно меньше. Вероятно, по этой причине во Вселенной преобладают звёзды, находящиеся именно на этой стадии развития. А вот как после неё будет проходить эволюционирование напрямую зависит от массы тела.

Эволюция звезд различной массы

Стоит отметить, что звездные тела имеют разные характеристики.

Низкая масса

Если начальная масса светила меньше 0.08 солнечной массы, то в недрах таких звезд не возникнет сгорание водорода. Проще говоря, в них отсутствует ядерный синтез, а энергия вырабатывается благодаря сжатию ядра. Примером подобных светил являются коричневые карлики. Их конечный этап — превращение в чёрный карлик, то есть остывшую звезду, которая не выделяет энергию.

К сожалению, такая же участь уготовлена красным карликам с подобной массой. Но в отличие от коричневых собратьев, внутри них происходит горение водорода. Правда, в слоевом источнике в районе гелиевого ядра водород уже не горит. В результате светило сжимается и нагревается. Затем наступает последний этап эволюции красного карлика малой массы — вырожденный гелиевый карлик. В это время практически всё звёздное тело состоит из гелия с водородной оболочкой, а равновесие удерживается вырожденным электронным газом.

Белый карлик

Средняя масса

Как оказалось, звёздная эволюция при средней массе тела проходит по следующему пути.
Для светил с массой от 0.5 до 8 солнечных масс путь один — это превращение в углеродно-кислородный белый карлик, который будет состоять из вырожденного газа.

Когда у звёзд с данными значениями массы в ядре заканчивается водород (он же сжигается, как мы помним), начинается его горение в слоевом источнике вокруг гелиевого ядра. В результате светило эволюционирует в стадию красного гиганта.

Красный гигант

Правда, процесс перевоплощения немного отличается при определенном весе. Так, если весовой показатель звезды находится в пределах от 0.5 до 3 солнечных масс, то в её ядре гелий взорвётся. Потому как в нём располагается вырожденный газ, произойдёт так называемая гелиевая вспышка.

Массивные звезды

А вот для светил с большей массой (от 3 до 8 солнечных) гелий будет гореть, но не взорвется. Поскольку газ не успевает выродиться из-за постоянной высокой ядерной температуры. Вместе с гелиевым сгоранием начинается рост конвективного ядра (то есть области, где происходит перенос энергии путём перемешивания веществ), а вокруг него горит оболочка из водорода. Что также приводит к превращению звезды в красный гигант.

Конвективная зона

Как происходит эволюция звезд на последнем этапе

Конечно, спустя какое-то время, запасы гелия иссякнут. И он начнёт сгорать в слоевом источнике около ядра. Которое, в свою очередь, будет сжиматься и нагреваться. В это время водородная оболочка, наоборот, расширяется и остывает. Таким образом звезда трансформируется из красного карлика в сверхгигант.
На следующем этапе своей жизни в центрах звезд с массой от 0.5 до 8 солнечных масс образуется углеродно-кислородное ядро, наполненное вырожденным газом. Собственно, вот и сформировался белый карлик. Но его оболочка всё продолжает расширяться и, наконец, она отделяется от светила.
Более того, уже отделившаяся оболочка не прекращает увеличиваться и, в конце концов, превращается в планетарную туманность. А звезда, как уже было сказано, остаётся белым карликом с вырожденным газом.

Читайте также:  Основными элементами крупномасштабной структуры вселенной являются выберите один ответ

Планетарная туманность Глаз Бога

Жизнь светил с высокой массой

Эволюция светил с высокой массой (от 8 до 10 солнечных) происходит по тому же сценарию, как и со средней. Но у них не успевает образоваться углеродно-кислородное ядро. Потому как оно сжимается и вырождается, а лишь затем начинает гореть углерод.
И вместо гелиевой вспышки происходит углеродная. Её также называют углеродной детонацией.
Иногда подобная детонация приводит к взрыву звезды как сверхновой. А иногда светило эволюционирует в неё без взрыва (при увеличении температуры в недрах газ может не вырождаться) и продолжает свою жизнь.

По данным учёных, во Вселенной есть очень массивные звёзды (около 10 солнечных масс). В результате того, что они очень горячие, внутри их ядра гелий начинает гореть, а они не успевают достигнуть стадии красного гиганта. Под действием различных факторов и процессов такие светила вырабатывают тяжёлые элементы. Таким образом происходит ядерный коллапс (разрушение), которое в зависимости от ядерной массы может сформировать либо нейтронную звезду, либо даже чёрную дыру.

Эволюция звёзд

Можно сказать, что рождение и эволюция звезд начинается в результате ядерных реакций. А также заканчивается, когда они прекращаются.

Конечно, развитие и длительность жизни звёзд разная, так как процессы в них протекают по-разному. Более того, конечные стадии их эволюции также отличаются. Да, есть определённые закономерности, но будущее неизвестно никому. Ведь, например, при расширении одного светила, оно может зацепить другое. Почему бы нет? Наверное, вы поняли, что большую роль играет масса тела и процессы, в нём протекающие.

В любом случае, происхождение таких различных между собой космических объектов, таких красивейших и прекрасных, является одним из чудес Вселенной. А их бесчисленное множество, участие в образовании других, не менее восхитительных объектов, играет огромную роль в развитии нашего космоса.

Источник

Жизнь звезды

Если просматривать жизненный цикл звезды, то напоминает человеческий. Здесь присутствует рождение, рост и смерть. Все начинается с масштабного облака нейтрального водорода, оставшегося с момента Большого Взрыва. Оно существует в спокойном состоянии, пока рядом не случится что-то непредвиденное. Это может быть взрыв сверхновой или удар с другим облаком. Подобный всплеск запускает процесс коллапса, и облако распадается на различные узлы материала, которые в итоге станут звездами. Нижняя схема демонстрирует этапы развития звезды с фото и вариантами возможных трансформаций (белый карлик, сверхновая звезда, нейтронная звезда, черная дыра).

Сила тяжести притягивает материал внутрь и ускоряет вращение. Звезда формируется из вещества, сжимающегося в центре, а планеты из материала на диске. Первое свечение происходит из-за огромного давления. Но потом звездное ядро настолько сильно разогревается, что запускает ядерную реакцию синтеза. Оставшиеся пыль и газ взрываются ветрами.

Звезда, вроде нашего Солнца, будет пребывать в главной последовательности в течение миллиардов лет. В это время осуществляется процесс трансформации водорода в гелий. Когда она начинает использовать легкоусвояемый водород, то приплющивается и снова возвращает процесс трансформации, превращая водородную оболочку в гелий вокруг ядра. Дополнительное тепло помогает звезде перерасти в красного гиганта и увеличиться в размерах.

Стандартная звезда переживает несколько этапов расширения и сжатия. Более крупные переходят на слияние гелия и даже задействуют более тяжелые элементы. В итоге, они достигнут максимума тяжести и вытолкнут внешние слои, чтобы создать планетарную туманность.

Звезда разрушается и превращается в белого карлика. Этот объект невероятно сжатый: обладает солнечной массой, но по размеру приравнивается к Луне. Он все еще поддерживает высокую температуру, которая медленно падает. При полном остывании становится коричневым карликом (фоновая температура Вселенной).

Если звезда крупнее Солнца, то завершает свой путь намного драматичнее. Масштабные звезды взрываются как сверхновые. Некоторые разрушаются и оставляют после себя нейтронную звезду или черную дыру. А другие настолько массивные, что просто разрываются на части. Теперь вы знаете как рождается, развивается, умирает и трансформируется звезда. Помните, что смерть для звездного небесного тела — начало существования в новой форме. Используйте карту звездного неба онлайн на сайте, чтобы найти самостоятельно в телескоп самые яркие звезды.

Источник

Жизненный цикл звезды

Все в этом мире развивается. Любой цикл начинается с рождения, роста и завершается смертью. Конечно, у звезд эти циклы проходят по-особенному. Вспомним хотя бы, что временные рамки у них более масштабные и измеряются миллионами и миллиардами лет. Кроме того, их смерть несет определенные последствия. Как же выглядит жизненный цикл звезд?

Читайте также:  Как устроена вселенная гибель последних звезд

Молекулярные облака

Начнем с рождения звезды. Представьте себе огромное облако холодного молекулярного газа, которое может спокойно существовать во Вселенной без всяких изменений. Но вдруг недалеко от него взрывается сверхновая или же оно наталкивается на другое облако. Из-за такого толчка активируется процесс разрушения. Оно делится на небольшие части, каждая их которых втягивается в себя. Как вы уже поняли, все эти кучки готовятся стать звездами. Гравитация накаляет температуру, а сохраненный импульс поддерживает процесс вращения. Нижняя схема наглядно демонстрирует цикл звезд (жизнь, этапы развития, варианты трансформации и смерть небесного тела с фото).

Протозвезда

Материал сгущается плотнее, нагревается и отталкивается от гравитационного коллапса. Такой объект называют протозвездой, вокруг которого формируется диск материала. Часть притягивается к объекту, увеличивая его массу. Остальные же обломки сгруппируются и создадут планетарную систему. Дальше развитие звезды все зависит от массы.

Т Тельца

При попадании материала на звезду, высвобождается огромное количество энергии. Новый звездный этап назвали в честь прототипа – Т Тельца. Это переменная звезда, расположенная в 600 световых годах (недалеко от скопления Гиад).

Она может достигать большой яркости, потому что материал разрушается и освобождает энергию. Но в центральной части не хватает температуры, чтобы поддерживать ядерный синтез. Эта фаза длится 100 миллионов лет.

Главная последовательность

В определенный момент температура небесного тела поднимается к необходимой отметке, активируя ядерный синтез. Через это проходят все звезды. Водород трансформируется в гелий, выделяя огромный тепловой запас и энергию.

Энергия высвобождается как гамма-лучи, но из-за медленного движение звезды она падает с длиной волны. Свет выталкивается наружу и вступает в конфронтацию с гравитацией. Можно считать, что здесь создается идеальное равновесие.

Сколько она пробудет в главной последовательности? Нужно исходить из массы звезды. Красные карлики (половина солнечной массы) способны тратить топливный запас сотни миллиардов (триллионы) лет. Средние звезды (как Солнце) живут 10-15 миллиардов. А вот наиболее крупные – миллиарды или миллионы лет. Посмотрите, как выглядит эволюция и смерть звезд различных классов на схеме.

Красный гигант

В процессе плавления водород заканчивается, а гелий накапливается. Когда водорода совсем не остается, все ядреные реакции замирают, и звезда начинает сжиматься из-за силы тяжести. Водородная оболочка вокруг ядра нагревается и зажигается, заставляя объект вырастать в 1000-10000 раз. В определенный момент и наше Солнце повторит эту судьбу, увеличившись до земной орбиты.

Температура и давление достигают максимума, и гелий сплавляется в углерод. В этой точке звезда сжимается и перестает быть красным гигантом. При большей массивности объект будет сжигать другие тяжелые элементы.

Белый карлик

Звезда с солнечной массой не располагает достаточным гравитационным давлением, чтобы сплавить углерод. Поэтому смерть наступает с окончанием гелия. Происходит выброс внешних слоев и появляется белый карлик. Сначала он горячий, но через сотни миллиардов лет остынет.

Источник

Эволюция звезд

Звёздная эволюция в астрономии – последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. в течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Цикл жизни звёзды

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см 3 . Молекулярное облако же имеет плотность около миллиона молекул на см 3 . Масса такого облака превышает массу Солнца в 100 000–10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационный коллапс облака. Один из сценариев, приводящих к этому – столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

любые неоднородности в силах, действующих на массу облака, могут запустить процесс звездообразования.

В ходе протекания этого процесса неоднородности молекулярного облака будут сжиматься под действием собственного тяготения и постепенно принимать форму шара. При сжатии энергия гравитации переходит в тепло, и температура объекта возрастает.

Читайте также:  Все герои вселенной соника

Когда температура в центре достигает 15–20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой.

Последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть ее химический состав.

Первая стадия жизни звезды подобна солнечной – в ней доминируют реакции водородного цикла.

В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга – Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст вселенной составляет 13,8 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Согласно теоретическим представлениям, некоторые из легких звезд, теряя свое вещество (звездный ветер), будут постепенно испаряться, становясь все меньше и меньше. Другие – красные карлики, будут медленно остывать миллиарды лет, продолжая слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет.

Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

Без давления, возникавшего в ходе термоядерных реакций и уравновешивавшего внутреннюю гравитацию, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования.

Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня.

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия, в ходе которых происходит превращение гелия в более тяжёлые элементы (гелий – в углерод, углерод – в кислород, кислород – в кремний, и наконец – кремний в железо).

Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз.

Звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет.

То, что происходит далее также зависит от массы звезды.

У звезд средней величины реакция термоядерного сжигания гелия может приводить к взрывному сбросу внешних слоев звезды с образованием из них планетарной туманности. Ядро звезды, в котором прекращаются термоядерные реакции, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5—0,6 Солнечных масс и диаметр порядка диаметра Земли.

Для массивных и сверхмассивных звезд (с массой от пяти Солнечных масс и более) происходящие в их ядре процессы по мере нарастания гравитационного сжатия приводят к взрыву сверхновой звезды с выделением огромной энергии. Взрыв сопровождается выбросом значительной массы вещества звезды в межзвёздное пространство. Это вещество в дальнейшем участвует в образовании новых звёзд, планет или спутников. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности, химически эволюционирует. Оставшееся после взрыва ядро звезды может закончить свою эволюцию как нейтронная звезда (пульсар), если масса звезды на поздних стадиях превышает предел Чандрасекара (1,44 Солнечной массы), либо как чёрная дыра, если масса звезды превышает предел Оппенгеймера – Волкова (оценочные значения 2,5-3 Солнечных масс).

Процесс звездной эволюции во Вселенной непрерывен и цикличен – угасают старые звезды, на смену им зажигаются новые.

По современным научным представлениям, из звездного вещества образовались элементы, необходимые для возникновения планет и жизни на Земле. Хотя единой общепринятой точки зрения на то, как возникла жизнь, пока нет.

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Источник

Adblock
detector