Внутреннее строение Солнца можно условно разделить на три зоны по характеру процессов, которые связаны с выделением и передачей энергии.
Солнечное ядро
Ядро – это центральная часть звезды. Оно имеет радиус 150 – 175 тыс. км, что составляет 20 – 25% солнечного радиуса. Ядро, по сути, является термоядерным реактором, ибо реакции такого типа в нём и происходят. Плотность ядра в 150 раз превышает плотность воды, а температура центра его больше 14 000 000° К. Скорость вращения звезды вокруг своей оси в ядре заметно выше, нежели на поверхности. Каждую секунду посредством термоядерной реакции в излучение обращаются 4,26 млн. тонн вещества. Но топлива солнечной кочегарки достаточно для нескольких миллиардов лет работы.
Зона лучистого переноса
В этой зоне перенос энергии происходит главным образом с помощью излучения и поглощения фотонов. При этом направление каждого конкретного фотона, излучённого слоем плазмы, никак не зависит от того, какие фотоны плазмой поглощались, поэтому он может как проникнуть в следующий слой плазмы в лучистой зоне, так и переместиться назад, в нижние слои. Из-за этого промежуток времени, за который многократно переизлучённый фотон (изначально возникший в ядре) достигает конвективной зоны, может измеряться миллионами лет. В среднем этот срок составляет для Солнца 170 тыс. лет
Конвективная зона
Следующую, внешнюю, область Солнца занимает конвективная зона. Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества.
С одной стороны, вещество фотосферы, охлаждаясь на поверхности, погружается вглубь конвективной зоны. С другой стороны, вещество в нижней части получает излучение из зоны лучевого переноса и поднимается наверх, причём оба процесса идут со значительной скоростью. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца толщиной примерно 200 000 км, где она происходит, — конвективной зоной. По мере приближения к поверхности температура падает в среднем до 5800 К, а плотность газа до менее 1/1000 плотности земного воздуха.
Источник
Зона конвекции
Зона конвекции — область Солнца (или более обще, звезды) в которой перенос энергии из внутренних районов во внешние происходит главным образом путём активного перемешивания вещества — конвекции.
Содержание
Расположение и строение
Выше зоны конвекции расположена фотосфера, ниже — зона лучистого переноса. Вещество в конвективной зоне все ещё непрозрачно для излучения, как и в лучистой зоне, однако его плотность уже не настолько велика, чтобы препятствовать его перемешиванию. Наглядным аналогом процессов, происходящих в конвективной зоне, является подогрев воды в сосуде. Пламя нагревает нижние слои воды, и они в результате теплового расширения вытесняются вверх другими, холодными и более тяжёлыми слоями. Аналогичный процесс происходит и в Солнце, где источником энергии служит солнечное ядро с происходящими в нем термоядерными реакциями.
Конвективные зоны звёзд различной массы
Обычная конвективная зона
Солнце, а также все звезды главной последовательности, имеющие среднюю массу, обладают конвективной зоной, которая занимает приблизительно треть объёма звезды. Когда горячая плазма поднимается к верхней границе конвективной зоны, она охлаждается за счёт излучения энергии в фотосферу, остывает и погружается вглубь, где нагревается излучением лучистой зоны, после чего цикл повторяется. Поскольку зона ядерных реакций отделена от зоны перемешивания вещества зоной лучистого переноса, то гелий практически не выносится в поверхностные слои Солнца, а накапливается в его ядре.
Ядерная конвективная зона
У звёзд, чья масса превышает солнечную в 1,1 раза синтез гелия осуществляется не протон-протонным, а азотно-углеродным циклом. Скорость этой реакции очень сильно зависит от температуры, поэтому температура внутри ядра по мере движения от центра звезды очень быстро опускается. Большой температурный градиент внутри ядра создаёт условия для формирования ещё одной, внутриядерной зоны конвекции, которая лежит под зоной лучистого переноса, и в которой происходит активное перемешивание массы вещества, участвующего в ядерных реакциях.
Звезды без лучистой зоны
У звёзд главной последовательности, имеющих малую массу — красных карликов, зона конвекции занимает все пространство от ядра до фотосферы, поскольку давление в их недрах не может сжать вещество настолько, чтобы препятствовать его перемешиванию, и привести к возникновению зоны лучистого переноса. У красных гигантов зона конвекции также простирается непосредственно до ядра.
Смотреть что такое «Зона конвекции» в других словарях:
Зона лучистого переноса — Строение Солнца Зона лучистого переноса средняя зона Солнца. Располагается непосредственно над солнечным ядро … Википедия
Конвективная зона — Строение Солнца Зона конвекции область Солнца (или более обще, звезды) в которой перенос … Википедия
КОНВЕКТЙВНАЯ ЗОНА — звезды область звезды с развитой конвекцией, являющейся осн. фактором переноса тепла и выравнивания хим. состава. У звёзд главной последовательности с массами имеются конвективные оболочки, толщина к рых увеличивается с уменьшением массы, так что … Физическая энциклопедия
Звёзды — самосветящиеся небесные тела, состоящие из раскалённых газов, по своей природе сходные с Солнцем. Солнце кажется несравненно больше З. только благодаря близости его к Земле: от Солнца до Земли свет идёт 81/3 мин, а от ближайшей звезды… … Большая советская энциклопедия
Солнце — У этого термина существуют и другие значения, см. Солнце (значения). Солнце … Википедия
Тропический шторм Эдуард (2008) — Эдуард Тропический шторм (SSHS) Тропический шторм Эдуард в Мексиканском заливе, 5 августа 2008 года Сформировался 3 августа 2008 … Википедия
Эдуард (тропический шторм, 2008) — У этого термина существуют и другие значения, см. Эдуард. Эдуард Тропический шторм (SSHS) … Википедия
Апвеллинг — Зона экваториального апвеллинга в Тихом океане А … Википедия
Источник
Из чего состоит Солнце?
Обычно говорят, что Солнце — это огромный раскалённый газовый шар. И если такого объяснения вам достаточно, то дальше можно и не читать. А если вам хочется знать более подробно, читайте дальше о том, как устроено Солнце.
Солнце — это не просто шар из раскалённых газов, оно имеет сложное строение и состоит из нескольких слоев: ядра, зоны лучистого переноса, зоны конвекции и атмосферы.
1. Ядро
Внутренний слой Солнца, который занимает четверть его радиуса (150-175 тысяч километров), называют ядром. Температура ядра достигает 15 миллионов градусов Цельсия. Ядро имеет невообразимо огромную плотность — 150 000 кг/м 3 ! Это в 150 раз больше, чем плотность воды. Давление в ядре достигает 3,4 х 10 11 атмосфер. В ядре сосредоточена половина массы Солнца.
Ядро — это «печка», которая является источником того жара и света, которые исходят от звезды. Источник солнечной энергии — термоядерные реакции в ядре, в ходе которых водород превращается в гелий и атомы других более тяжелых элементов.
Похожая реакция происходит в водородной бомбе при её взрыве. Так что можно сказать, что Солнце — огромная водородная бомба, но только эта «бомба» не взрывается, а только «тлеет», и будет так тлеть еще около 5 миллиардов лет, пока в нём не закончится водородное горючее. И вот тогда Солнце действительно «взорвётся», то есть сильно расширится и превратится в звезду ещё больших размеров — красного гиганта (сейчас это жёлтый карлик). В таком состоянии Солнце будет находиться еще несколько миллиардов лет. А потом сожмётся в белого карлика размером с нашу планету, который постепенно остынет.
Каждую секунду в ядре Солнца сгорает примерно 4 миллиона тонн вещества. В результате этих реакций образуется огромное количество лучистой энергии. Поэтому с течением времени Солнце светит всё ярче, становится всё горячее и при этом чуточку «худеет».
Что же происходит с энергией, которая выделяется в результате термоядерных реакций? Она перемещается наружу, в следующий слой.
2. Зона лучистого переноса
Лучистая зона окружает ядро и заканчивается на уровне 0,7 от солнечного радиуса, то есть занимает половину радиуса нашей родной звезды. Эта зона состоит из водородно-гелиевой плазмы. На границе с ядром плотность плазмы составляет 20 г/см 3 , что приблизительно равно плотности золота. Но по мере приближения к внешней границе зоны ее плотность падает в 100 раз (до 0,2 г/см 3 — это меньше, чем плотность воды). При этом снижается и температура: если на внутренней границе зоны она составлет 7 миллионов градусов, то на верхней границе — «всего» 2 миллиона градусов.
Свое название эта зона получила от способа, которым энергия переносится в ней от ядра к поверхности. Способ этот — излучение. В ядре образуются частицы света — фотоны. Чтобы «выбраться» на поверхность, им нужно пройти через слой водородной плазмы. Но по пути они постоянно сталкиваются с частицами плазмы. Те их поглощают, потом снова переизлучают, причем в разных направлениях. И если фотон преодолевает расстояние от поверхности Солнца до Земли (полтора миллиона километров) за 8 минут, то для достижения наружного края лучистой зоны (напрямую это порядка 350 000 км), ему могут потребоваться. миллионы лет! Несмотря на сложности пути, главное направление у них одно — в ту сторону, где плотность вещества меньше, поэтому общий поток лучистой энергии направлен от центра Солнца наружу.
3. Зона конвекции
В зоне лучистого переноса конвекция невозможна, так как ее вещество слишком плотное и неподвижное. Но в наружных слоях этой зоны вещество уже настолько разрежено, что может перемещаться. Здесь начинается зона конвекции.
Граница между зоной лучистого переноса и зоной конвекции называется тахоклин. Считается, что именно в этом промежуточном слое происходит формирование магнитного поля Солнца.
Как и зона лучистого переноса, зона конвекции неоднородна. Это огромный по величине слой: хотя по толщине зона конвекции занимает всего десятую часть радиуса Солнца, на неё приходится две трети его объёма. Однако его масса составляет всего 2% от массы Солнца, потому что солнечное вещество в этом слое сильно разрежено. Если на границе с зоной лучистого переноса, как мы помним, его плотность равна 0,2 г/см 3 , то на границе с солнечной атмосферой (следующей зоной) она в десять тысяч раз ниже, чем плотность воздуха, то есть это очень сильно разреженный газ. Температура в этой зоне тоже падает радикально изнутри наружу: от 2 000 000°С в области тахоклина до 6000°С у внешней границы.
Процесс конвекции в этой зоне происходит по тому же принципу, что и движение воздуха в комнате с работающей отопительной батареей: от подошвы зоны поднимаются вверх потоки нагретого вещества, а им навстречу двигаются потоки менее нагретого вещества. Так происходит активное перемешивание вещества в зоне.
Поверхность Солнца, если посмотреть на неё в телескоп (конечно, со специальным фильтром), выглядит ячеистой, состоящей из гранул. Эти гранулы создаются теми самыми восходящими потоками солнечного вещества в процессе конвекции. Чем глубже образуются гранулы, тем они крупнее. У подошвы зоны конвекции, на глубине несколько тысяч километров, образуются огромные супергранулы размером 30-35 тысяч километров, а в верхних слоях конвективной зоны размер гранул составляет всего несколько сотен километров. Срок жизни гранул в зависимости от размеров — от нескольких минут до нескольких часов.
Самые свежие изображения поверхности Солнца с высоким разрешением (декабрь 2019 г.)
Область на видео — размером с нашу Землю. Хорошо видны гранулы фотосферы, каждая размером с небольшую страну. Яркие области — восходящие потоки высокотемпературной плазмы, темные области — зоны более низкой температуры, опускающиеся вниз.
Атмосферу Солнца ученые разделяют на три зоны: самая нижняя — фотосфера, над ней — хромосфера, последний слой — солнечная корона.
Фотосфера — источник излучения видимого света Солнца, то есть то, что мы видим как солнечный диск. Излучение более глубоких слоев мы видеть не можем, оно до нас не доходит.
Свет Солнца — чисто белый. Но на Земле мы видим его желтоватым, и виновата в этом атмосфера: она рассеивает солнечный свет и поглощает часть цветов.
Толщина фотосферы невелика — не больше 400 километров. Температура солнечного вещества по мере восхождения в фотосфере продолжает снижаться: если на глубине 300 км температура Солнца 8000 градусов, то в верхних слоях фотосферы — уже только 4000 градусов. Состоит фотосфера из раскаленных газов. Благодаря прозрачности этой зоны можно видеть зону грануляции в верхних слоях зоны конвекции.
Именно в фотосфере наблюдаются солнечные пятна. Самые крупные из них видны даже невооруженным глазом. Это области, температура которых гораздо (примерно на 1500-2000 градусов) ниже, чем на окружающих пятна участках. Солнечное пятно — это место выхода наружу сильных магнитных полей. Они мешают конвективному переносу, и тем самым уменьшают поток тепловой энергии — отсюда и понижение температуры. Ученые пристально наблюдают за пятнами на Солнце, ведь их количество — показатель магнитной активности нашей звёзды.
Хромосфера — следующая за фотосферой зона, цветная сфера. Так её назвали из-за красноватого оттенка. Разглядеть её сложно из-за близости фотосферы. Увидеть хромосферу можно во время солнечного затмения как розовое сияние вокруг затемнённого диска Солнца. Чётких границ у хромосферы нет. Её очертания можно сравнить с языками пламени. Эти языки называют спикулами. Они представляют собой потоки плазмы, вырывающиеся из Солнца. Размеры спикул — от 200 до 2000 км в поперечнике и несколько тысяч километров в высоту. По сравнению с фотосферой хромосфера более разрежена, но тем не менее она более горячая — до 20 000 градусов. Но это — ничто по сравнению с температурой самого наружного слоя солнечной атмосферы — короны.
Солнечная корона — самая разреженная, но и самая горячая часть солнечной атмосферы: ее температура достигает 1-2 миллионов градусов. Состоит корона из разреженных ионизированных газов, а простирается она на несколько диаметров Солнца! Постепенно разреживаясь, корона заполняет все межпланетное пространство. В короне можно наблюдать протуберанцы — плотные сгустки плазмы, которые выбрасывает Солнце. Они поднимаются над поверхностью светила, но не могут оторваться от него — их не пускает магнитное поле. Так же как и хромосферу, протуберанцы можно увидеть во время солнечных затмений.
Самый большой протуберанец за всю историю наблюданий Солнца «выстрелил» в 1946 году и имел высоту 1,7 млн. км (расстояние от Солнца до Земли, напомним, — 150 млн. км).
Солнечная корона — источник солнечного ветра, представляющего собой поток заряженных частиц. Именно солнечный ветер вызывает такие явления на Земле, как полярное сияние и геомагнитные бури.
Помните, в начале мы говорили, что масса Солнца уменьшается в результате сгорания водородного топлива в ядре? Из-за солнечного ветра наша звезда тоже «худеет», но не сильно: за 150 млн. лет с ветром уносится количество солнечного вещества, равное массе Земли.
Суммируем знания, полученные на этой странице.
Звезда по имени Солнце:
Радиус — 696 000 км
Диаметр — 1 392 000 км (109 диаметров Земли)
Масса — 1,9891·10 30 кг (332 982 масс Земли)
Объём — 1,40927·10 27 м 3 (1 301 019 объёмов Земли)
Средняя плотность — 1,41 г/см 3 (от центра к периферии уменьшается в 100 раз)
Температура ядра
15 700 000 К* Температура поверхности
5778 К Температура короны
1 500 000 К
Состав: 74,5% — водород, 24,6% — гелий, 1% — прочие элементы (азот, кислород, углерод, железо, кремний, хром, магний, сера и др.)
Возраст — 4,5 миллиарда лет. * Температура в кельвинах. 0 K = -273°С